Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(9)2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761906

RESUMO

The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.


Assuntos
Ciclofilina A , Disceratose Congênita , Humanos , Catálise , Disceratose Congênita/genética , Ribonucleoproteínas , Proteínas de Ligação a RNA
2.
Biomedicines ; 11(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239099

RESUMO

Colorectal cancer (CRC) stands as the third most significant contributor to cancer-related mortality worldwide. A major underlying reason is that the detection of CRC usually occurs at an advanced metastatic stage, rendering therapies ineffective. In the progression from the in situ neoplasia stage to the advanced metastatic stage, a critical molecular mechanism involved is the epithelial-to-mesenchymal transition (EMT). This intricate transformation consists of a series of molecular changes, ultimately leading the epithelial cell to relinquish its features and acquire mesenchymal and stem-like cell characteristics. The EMT regulation involves several factors, such as transcription factors, cytokines, micro RNAs and long noncoding RNAs. Nevertheless, recent studies have illuminated an emerging link between metabolic alterations and EMT in various types of cancers, including colorectal cancers. In this review, we delved into the pivotal role played by EMT during CRC progression, with a focus on highlighting the relationship between the alterations of the tricarboxylic acid cycle, specifically those involving the succinate dehydrogenase enzyme, and the activation of the EMT program. In fact, emerging evidence supports the idea that elucidating the metabolic modifications that can either induce or inhibit tumor progression could be of immense significance for shaping new therapeutic approaches and preventative measures. We conclude that an extensive effort must be directed towards research for the standardization of drugs that specifically target proteins such as SDH and SUCNR1, but also TRAP1, PDH, ERK1/2, STAT3 and the HIF1-α catabolism.

3.
Mar Drugs ; 20(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36005516

RESUMO

The invasive macroalga Caulerpa cylindracea has spread widely in the Mediterranean Sea, becoming a favorite food item for native fish for reasons yet unknown. By using a combination of behavioral, morphological, and molecular approaches, herein we provide evidence that the bisindole alkaloid caulerpin, a major secondary metabolite of C. cylindracea, significantly increases food intake in the model fish Danio rerio, influencing the regulation of genes involved in the orexigenic pathway. In addition, we found that the compound improves fish reproductive performance by affecting the hypothalamus-pituitary-gonadal axis. The obtained results pave the way for the possible valorization of C. cylindracea as a sustainable source of a functional feed additive of interest to face critical challenges both in aquaculture and in human nutrition.


Assuntos
Alcaloides , Caulerpa , Dourada , Alga Marinha , Animais , Humanos , Mar Mediterrâneo
4.
Biomedicines ; 10(5)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35625829

RESUMO

Dyskerin is an evolutionarily conserved nucleolar protein implicated in a wide range of fundamental biological roles, including telomere maintenance and ribosome biogenesis. Germline mutations of DKC1, the human gene encoding dyskerin, cause the hereditary disorders known as X-linked dyskeratosis congenita (X-DC). Moreover, dyskerin is upregulated in several cancers. Due to the pleiotropic functions of dyskerin, the X-DC clinical features overlap with those of both telomeropathies and ribosomopathies. In this paper, we evaluate the telomerase-independent effects of dyskerin depletion on cellular physiology by using inducible DCK1 knockdown. This system allows the downregulation of DKC1 expression within a short timeframe. We report that, in these cellular systems, dyskerin depletion induces the accumulation of unfolded/misfolded proteins in the endoplasmic reticulum, which in turn induces the activation of the PERK branch of the unfolded protein response. We also demonstrate that the PERK-eIF2a-ATF4-CHOP signaling pathway, activated by dyskerin downregulation, triggers a functional autophagic flux through the inhibition of the PI3K/AKT/mTOR pathway. By revealing a novel unpredicted connection between the loss of dyskerin, autophagy and UPR, our results establish a firm link between the lowering of dyskerin levels and the activation of the ER stress response, that plays a key role in the pathogenesis of several diseases.

5.
Membranes (Basel) ; 11(5)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923292

RESUMO

Colorectal cancer (CRC) is the third most frequent cancer worldwide and the second greatest cause of cancer deaths. About 75% of all CRCs are sporadic cancers and arise following somatic mutations, while about 10% are hereditary cancers caused by germline mutations in specific genes. Several factors, such as growth factors, cytokines, and genetic or epigenetic alterations in specific oncogenes or tumor-suppressor genes, play a role during the adenoma-carcinoma sequence. Recent studies have reported an increase in interleukin-6 (IL-6) and soluble interleukin-6 receptor (sIL-6R) levels in the sera of patients affected by colon cancer that correlate with the tumor size, suggesting a potential role for IL-6 in colon cancer progression. IL-6 is a pleiotropic cytokine showing both pro- and anti-inflammatory roles. Two different types of IL-6 signaling are known. Classic IL-6 signaling involves the binding of IL-6 to its membrane receptor on the surfaces of target cells; alternatively, IL-6 binds to sIL-6R in a process called IL-6 trans-signaling. The activation of IL-6 trans-signaling by metalloproteinases has been described during colon cancer progression and metastasis, involving a shift from membrane-bound interleukin-6 receptor (IL-6R) expression on the tumor cell surface toward the release of soluble IL-6R. In this review, we aim to shed light on the role of IL-6 signaling pathway alterations in sporadic colorectal cancer and the development of familial polyposis syndrome. Furthermore, we evaluate the possible roles of IL-6 and IL-6R as biomarkers useful in disease follow-up and as potential targets for therapy, such as monoclonal antibodies against IL-6 or IL-6R, or a food-based approach against IL-6.

6.
Mol Med Rep ; 21(3): 1501-1508, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32016459

RESUMO

Colorectal cancer (CRC) is the third most prevalent type of cancer worldwide. It is also the second most common cause of cancer­associated mortality; it accounted for about 9.2% of all cancer deaths in 2018, most of which were due to resistance to therapy. The main treatment for CRC is surgery, generally associated with chemotherapy, radiation therapy and combination therapy. However, while chemo­radiotherapy kills differentiated cancer cells, mesenchymal stem­like cells are resistant to this treatment, and this can give rise to therapy­resistant tumors. Our previous study isolated T88 primary colon cancer cells from a patient with sporadic colon cancer. These cells exhibited mesenchymal and epithelial features, high levels of epithelial­to­mesenchymal transition transcription factors, and stemness markers. In addition, it was revealed that lithium chloride (LiCl), a specific glycogen synthase kinase (GSK)­3ß inhibitor, induced both the mesenchymal­to­epithelial transition and differentiation, and also reduced cell migration, stemness features and cell plasticity in these primary colon cancer cells. The aim of the present study was to investigate the effect of LiCl treatment on the viability of primary colon cancer cells exposed to 7 Gy delivered by high­energy photon beams, which corresponds to 6 megavolts of energy. To achieve this aim, the viability of irradiated T88 cells was compared with that of irradiated T88 cells pre­treated with LiCl. As expected, it was observed that LiCl sensitized primary colon cancer cells to high­energy photon irradiation treatment. Notably, the decrease in cell viability was greater with combined therapy than with irradiation alone. To explore the molecular basis of this response, the effect of LiCl on the expression of Bax, p53 and Survivin, which are proteins involved in the apoptotic mechanism and in death escape, was analyzed. The present study revealed that LiCl upregulated the expression of pro­apoptotic proteins and downregulated the expression of proteins involved in survival. These effects were enhanced by high­energy photon irradiation, suggesting that LiCl could be used to sensitize colon cancer cells to radiation therapy.


Assuntos
Cloreto de Lítio/farmacologia , Fótons , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/diagnóstico , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/radioterapia , Humanos , Radioterapia de Alta Energia/métodos , Transdução de Sinais/efeitos dos fármacos
7.
Cancers (Basel) ; 11(12)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817090

RESUMO

Colorectal cancer (CRC) has been ranked as the third most prevalent cancer worldwide. Indeed, it represents 10.2% of all cancer cases. It is also the second most common cause of cancer mortality, and accounted for about 9.2% of all cancer deaths in 2018. Early detection together with a correct diagnosis and staging remains the most effective clinical strategy in terms of disease recovery. Thanks to advances in diagnostic techniques, and improvements of surgical adjuvant and palliative therapies, the mortality rate of CRC has decreased by more than 20% in the last decade. Cancer biomarkers for the early detection of CRC, its management, treatment and follow-up have contributed to the decrease in CRC mortality. Herein, we provide an overview of molecular biomarkers from tumor tissues and liquid biopsies that are approved for use in the CRC clinical setting for early detection, follow-up, and precision therapy, and of biomarkers that have not yet been officially validated and are, nowadays, under investigation.

8.
Biochim Biophys Acta Mol Cell Res ; 1866(12): 118529, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31412274

RESUMO

Many cell stressors block protein translation, inducing formation of cytoplasmic aggregates. These aggregates, named stress granules (SGs), are composed by translationally stalled ribonucleoproteins and their assembly strongly contributes to cell survival. Composition and dynamics of SGs are thus important starting points for identifying critical factors of the stress response. In the present study we link components of the H/ACA snoRNP complexes, highly concentrated in the nucleoli and the Cajal bodies, to SG composition. H/ACA snoRNPs are composed by a core of four highly conserved proteins -dyskerin, Nhp2, Nop10 and Gar1- and are involved in several fundamental processes, including ribosome biogenesis, RNA pseudouridylation, stabilization of small nucleolar RNAs and telomere maintenance. By taking advantage of cells overexpressing a dyskerin splice variant undergoing a dynamic intracellular trafficking, we were able to show that H/ACA snoRNP components can participate in SG formation, this way contributing to the stress response and perhaps transducing signals from the nucleus to the cytoplasm. Collectively, our results show for the first time that H/ACA snoRNP proteins can have additional non-nuclear functions, either independently or interacting with each other, thus further strengthening the close relationship linking nucleolus to SG composition.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/isolamento & purificação , Células HeLa , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , Células Tumorais Cultivadas
9.
J Exp Clin Cancer Res ; 38(1): 41, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30691487

RESUMO

BACKGROUND: Previous studies showed that the combination of an anti-Epidermal growth factor (EGFR) and a MEK-inhibitor is able to prevent the onset of resistance to anti-EGFR monoclonal antibodies in KRAS-wild type colorectal cancer (CRC), while the same combination reverts anti-EGFR primary resistance in KRAS mutated CRC cell lines. However, rapid onset of resistance is a limit to combination therapies in KRAS mutated CRC. METHODS: We generated four different KRAS mutated CRC cell lines resistant to a combination of cetuximab (an anti-EGFR antibody) and refametinib (a selective MEK-inhibitor) after continuous exposure to increasing concentration of the drugs. We characterized these resistant cell lines by evaluating the expression and activation status of a panel of receptor tyrosine kinases (RTKs) and intracellular transducers by immunoblot and qRT-PCR. Oncomine comprehensive assay and microarray analysis were carried out to investigate new acquired mutations or transcriptomic adaptation, respectively, in the resistant cell lines. Immunofluorescence assay was used to show the localization of RTKs in resistant and parental clones. RESULTS: We found that PI3K-AKT pathway activation acts as an escape mechanism in cell lines with acquired resistance to combined inhibition of EGFR and MEK. AKT pathway activation is coupled to the activation of multiple RTKs such as HER2, HER3 and IGF1R, though its pharmacological inhibition is not sufficient to revert the resistant phenotype. PI3K pathway activation is mediated by autocrine loops and by heterodimerization of multiple receptors. CONCLUSIONS: PI3K activation plays a central role in the acquired resistance to the combination of anti-EGFR and MEK-inhibitor in KRAS mutated colorectal cancer cell lines. PI3K activation is cooperatively achieved through the activation of multiple RTKs such as HER2, HER3 and IGF1R.


Assuntos
Neoplasias Colorretais/patologia , Receptores ErbB/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Células Tumorais Cultivadas
10.
Int J Oncol ; 53(6): 2379-2396, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30272331

RESUMO

Cellular plasticity, the ability of cells to switch from an epitheial phenotype to a mesenchymal one and vice versa, plays a crucial role in tumour progression and metastases development. In 20-25% of patients with colon cancer and in 18% of patients with rectal cancer, metastases are present at the time of the first diagnosis. They are the first cause of colorectal cancer (CRC)-related mortality, defining stage IV CRC, which is characterized by a relatively short overall survival. We previously isolated two primary colon adenocarcinoma cell cultures that had undergone epithelial-mesenchymal transition (EMT), one with a high microsatellite instability phenotype (T88) and one with a chromosomal instability phenotype (T93). The aim of this study was to establish a model with which to study EMT, stemness features and cell plasticity in cancer progression and to examine the effects of incubation with lithium chloride (LiCl), a specific glycogen synthase kinase 3 ß (GSK-3ß) inhibitor, on these cellular processes. Indeed, GSK3ß is an important regulator of cell survival, which promotes tumourigenesis in colon cells by facilitating the crosstalk between colorectal cancer pathways. Thus, we further characterized our system of adherent primary mesenchymal colon cancer cells and their paired tumourspheres by examining the expression and localisation of a panel of markers, including E- and N­cadherin, CD133, CD44v6, aldehyde dehydrogenase 1 (ALDH1) and leucine-rich repeat­containing G-protein coupled receptor 5 (LGR5). We also characterised the molecular features of these tumourspheres and examined their response to LiCl. Furthermore, we explored the effects of LiCl on cell motility and plasticity. We demonstrated that LiCl reduced cell migration, stemness features and cell plasticity. We also observed the atypical nuclear localisation of membrane proteins, including N­cadherin, CD133 and CD44v6 in mesenchymal tumour cells. Of note, CD133 and CD44v6 appeared to localise at the plasma membrane in cells with a more epithelial phenotype, suggesting that the cytoplasmic/nuclear localisation of these proteins could favour and characterize cell plasticity in colorectal cancer progression.


Assuntos
Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Instabilidade Genômica , Cloreto de Lítio/farmacologia , Células-Tronco Mesenquimais/citologia , Biomarcadores Tumorais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Progressão da Doença , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Metástase Neoplásica , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo
11.
Redox Biol ; 14: 557-565, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29132127

RESUMO

The human DKC1 gene encodes dyskerin, an evolutionarily conserved nuclear protein whose overexpression represents a common trait of many types of aggressive sporadic cancers. As a crucial component of the nuclear H/ACA snoRNP complexes, dyskerin is involved in a variety of essential processes, including telomere maintenance, splicing efficiency, ribosome biogenesis, snoRNAs stabilization and stress response. Although multiple minor dyskerin splicing isoforms have been identified, their functions remain to be defined. Considering that low-abundance splice variants could contribute to the wide functional repertoire attributed to dyskerin, possibly having more specialized tasks or playing significant roles in changing cell status, we investigated in more detail the biological roles of a truncated dyskerin isoform that lacks the C-terminal nuclear localization signal and shows a prevalent cytoplasmic localization. Here we show that this dyskerin variant can boost energy metabolism and improve respiration, ultimately conferring a ROS adaptive response and a growth advantage to cells. These results reveal an unexpected involvement of DKC1 in energy metabolism, highlighting a previously underscored role in the regulation of metabolic cell homeostasis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético , Proteínas Nucleares/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Isoformas de Proteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Superóxidos/metabolismo
12.
Int J Mol Sci ; 18(11)2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29156651

RESUMO

chlorpyrifos (CPF) is an organophosphate insecticide used to control pests on a variety of food and feed crops. In mammals, maternal exposure to CPF has been reported to induce cerebral cortex thinning, alteration of long-term brain cognitive function, and Parkinson-like symptoms, but the mechanisms of these processes are not fully understood. In this study, we aimed to gain a deeper understanding of the alterations induced in the brains of mice chronically exposed to CPF by dietary intake. For our purpose, we analysed F1 offspring (sacrificed at 3 and 8 months) of Mus musculus, treated in utero and postnatally with 3 different doses of CPF (0.1-1-10 mg/kg/day). Using RT² Profiler PCR Arrays, we evaluated the alterations in the expression of 84 genes associated with neurodegenerative diseases. In the brains of exposed mice, we evidenced a clear dose-response relationship for AChE inhibition and alterations of gene expression. Some of the genes that were steadily down-regulated, such as Pink1, Park 2, Sv2b, Gabbr2, Sept5 and Atxn2, were directly related to Parkinson's onset. Our experimental results shed light on the possibility that long-term CPF exposure may exert membrane signalling alterations which make brain cells more susceptible to develop neurodegenerative diseases.


Assuntos
Encéfalo/metabolismo , Clorpirifos/toxicidade , Exposição Materna/efeitos adversos , Doença de Parkinson Secundária/genética , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Exposição Dietética/efeitos adversos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Inseticidas/toxicidade , Camundongos , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Biossíntese de Proteínas/efeitos dos fármacos
13.
FEBS Open Bio ; 7(10): 1453-1468, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28979836

RESUMO

Dyskerin is an essential, conserved, multifunctional protein found in the nucleolus, whose loss of function causes the rare genetic diseases X-linked dyskeratosis congenita and Hoyeraal-Hreidarsson syndrome. To further investigate the wide range of dyskerin's biological roles, we set up stable cell lines able to trigger inducible protein knockdown and allow a detailed analysis of the cascade of events occurring within a short time frame. We report that dyskerin depletion quickly induces cytoskeleton remodeling and significant alterations in endocytic Ras-related protein Rab-5A/Rab11 trafficking. These effects arise in different cell lines well before the onset of telomere shortening, which is widely considered the main cause of dyskerin-related diseases. Given that vesicular trafficking affects many homeostatic and differentiative processes, these findings add novel insights into the molecular mechanisms underlining the pleiotropic manifestation of the dyskerin loss-of-function phenotype.

14.
J Exp Zool B Mol Dev Evol ; 328(4): 360-370, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28317246

RESUMO

Sexual differentiation (SD) during development results in anatomical, metabolic, and physiological differences that involve not only the gonads, but also a variety of other biological structures, such as the brain, determining differences in morphology, behavior, and response in the breeding season. In many reptiles, whose sex is determined by egg incubation temperature, such as the leopard gecko, Eublepharis macularius, embryos incubated at different temperatures clearly differ in the volume of brain nuclei that modulate behavior. Based on the premise that "the developmental decision of gender does not flow through a single gene", we performed an analysis on E. macularius using three approaches to gain insights into the genes that may be involved in brain SD during the thermosensitive period. Using quantitative RT-PCR, we studied the expression of genes known to be involved in gonadal SD such as WNT4, SOX9, DMRT1, Erα, Erß, GnRH, P450 aromatase, PRL, and PRL-R. Then, further genes putatively involved in sex dimorphic brain differentiation were sought by differential display (DDRT-PCR) and PCR array. Our findings indicate that embryo exposure to different sex determining temperatures induces differential expression of several genes that are involved not only in gonadal differentiation (PRL-R, Wnt4, Erα, Erß, p450 aromatase, and DMRT1), but also in neural differentiation (TN-R, Adora2A, and ASCL1) and metabolic pathways (GP1, RPS15, and NADH12). These data suggest that the brains of SDT reptiles might be dimorphic at birth, thus behavioral experiences in postnatal development would act on a structure already committed to male or female.


Assuntos
Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Lagartos/metabolismo , Processos de Determinação Sexual/fisiologia , Animais , Feminino , Gônadas/fisiologia , Masculino , Reação em Cadeia da Polimerase , Gravidez , Efeitos Tardios da Exposição Pré-Natal , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Temperatura
15.
Exp Cell Res ; 330(2): 240-247, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25246129

RESUMO

Nanoparticle (NPs) delivery systems in vivo promises to overcome many obstacles associated with the administration of drugs, vaccines, plasmid DNA and RNA materials, making the study of their cellular uptake a central issue in nanomedicine. The uptake of NPs may be influenced by the cell culture stage and the NPs physical-chemical properties. So far, controversial data on NPs uptake have been derived owing to the heterogeneity of NPs and the general use of immortalized cancer cell lines that often behave differently from each other and from primary mammalian cell cultures. Main aims of the present study were to investigate the uptake, endocytosis pathways, intracellular fate and release of well standardized model particles, i.e. fluorescent 44 nm polystyrene NPs (PS-NPs), on two primary mammalian cell cultures, i.e. bovine oviductal epithelial cells (BOEC) and human colon fibroblasts (HCF) by confocal microscopy and spectrofluorimetric analysis. Different drugs and conditions that inhibit specific internalization routes were used to understand the mechanisms that mediate PS-NP uptake. Our data showed that PS-NPs are rapidly internalized by both cell types 1) with similar saturation kinetics; 2) through ATP-independent processes, and 3) quickly released in the culture medium. Our results suggest that PS-NPs are able to rapidly cross the cell membrane through passive translocation during both uptake and release, and emphasize the need to carefully design NPs for drug delivery, to ensure their selective uptake and to optimize their retainment in the targeted cells.


Assuntos
Colo/metabolismo , Sistemas de Liberação de Medicamentos , Nanopartículas/metabolismo , Oviductos/metabolismo , Poliestirenos/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacologia , Animais , Transporte Biológico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Bovinos , Caveolina 1/antagonistas & inibidores , Caveolina 1/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Colo/citologia , Endocitose , Células Epiteliais/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Hidrazonas/farmacologia , Microscopia Confocal , Neoplasias , Oviductos/citologia , Tamanho da Partícula , Cultura Primária de Células , Espectrometria de Fluorescência , Sacarose/farmacologia , Tiazolidinas/farmacologia
16.
Biol Chem ; 395(6): 593-610, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24468621

RESUMO

Human dyskerin is an evolutively conserved protein that participates in diverse nuclear complexes: the H/ACA snoRNPs, that control ribosome biogenesis, RNA pseudouridylation, and stability of H/ACA snoRNAs; the scaRNPs, that control pseudouridylation of snRNAs; and the telomerase active holoenzyme, which safeguards telomere integrity. The biological importance of dyskerin is further outlined by the fact that its deficiency causes the X-linked dyskeratosis congenita disease, while its over-expression characterizes several types of cancers and has been proposed as prognostic marker. The role of dyskerin in telomere maintenance has widely been discussed, while its functions as H/ACA sno/scaRNP component has been so far mostly overlooked and represent the main goal of this review. Here we summarize how increasing evidence indicates that the snoRNA/microRNA pathways can be interlaced, and that dyskerin-dependent RNA pseudouridylation represents a flexible mechanism able to modulate RNA function in different ways, including modulation of splicing, change of mRNA coding properties, and selective regulation of IRES-dependent translation. We also propose a speculative model that suggests that the dynamics of pre-assembly and nuclear import of H/ACA RNPs are crucial regulatory steps that can be finely controlled in the cytoplasm in response to developmental, differentiative and stress stimuli.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Disceratose Congênita/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Ciclo Celular/genética , Disceratose Congênita/genética , Humanos , Proteínas Nucleares/genética , Telômero
17.
Biochem Cell Biol ; 91(6): 506-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24219293

RESUMO

Identification of alternatively spliced transcripts produced by a gene is a crucial step in deciphering the bulk of its biological roles and the overall processes that regulate its activity. By using a combination of bioinformatic and molecular approaches we identified, cloned, and characterized 3 novel alternative splice isoforms derived from human dyskeratosis congenita 1 (hDKC1), an essential human gene causative of the X-linked dyskeratosis congenita disease and involved in multiple functions related to cell growth, proliferation, and telomere maintenance. Expression of the new isoforms, all characterized by intron retention, was confirmed by RT-PCR in a panel of diverse cell lines and normal human tissues, and despite the presence of premature termination codons, was not down-regulated by the mechanism of nonsense-mediated decay. Accumulation of these transcripts fluctuated distinctly in the diverse tissues and during in vitro differentiation of Caco2 cells, suggesting that their ratio may contribute to the gene functional diversity across different cell types. Intriguingly, the structure of one isoform leads to exonize an intronically encoded small nucleolar RNA (snoRNA), highlighting an additional layer of complexity that can contribute to overall gene regulation.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/genética , Disceratose Congênita/genética , Íntrons , Mutação , Proteínas Nucleares/genética , Células CACO-2 , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Códon sem Sentido , Disceratose Congênita/metabolismo , Éxons , Regulação da Expressão Gênica , Variação Genética , Humanos , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Nucleolar Pequeno/genética , RNA Nucleolar Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
18.
BMC Med Genet ; 13: 28, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22520842

RESUMO

BACKGROUND: The "PTEN hamartoma tumor syndrome" (PHTS) includes a group of syndromes caused by germline mutations within the tumor suppressor gene "phosphatase and tensin homolog deleted on chromosome ten" (PTEN), characterized by multiple polyps in the gastrointestinal tract and by a highly increased risk of developing malignant tumours in many tissues. The current work clarifies the molecular basis of PHTS in three unrelated Italian patients, and sheds light on molecular pathway disregulation constitutively associated to PTEN alteration. METHODS: We performed a combination of RT-PCR, PCR, sequencing of the amplified fragments, Real Time PCR and western blot techniques. RESULTS: Our data provide the first evidence of ß-catenin accumulation in blood cells of patients with hereditary cancer syndrome caused by germ-line PTEN alteration. In addition, for the first time we show, in all PHTS patients analysed, alterations in the expression of TNFα, its receptors and IL-10. Importantly, the isoform of TNFRI that lacks the DEATH domain (TNFRSF1ß) was found to be overexpressed. CONCLUSION: In light of our findings, we suggest that the PTEN pathway disregulation could determine, in non-neoplastic cells of PHTS patients, cell survival and pro-inflammatory stimulation, mediated by the expression of molecules such as ß-catenin, TNFα and TNFα receptors, which could predispose these patients to the development of multiple cancers.


Assuntos
Citocinas/metabolismo , Síndrome do Hamartoma Múltiplo/genética , PTEN Fosfo-Hidrolase/genética , beta Catenina/metabolismo , Regulação Neoplásica da Expressão Gênica , Mutação em Linhagem Germinativa , Humanos , Interleucina-10/metabolismo , Masculino , Pessoa de Meia-Idade , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/química , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Wnt/metabolismo
19.
Biochim Biophys Acta ; 1810(12): 1361-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21820037

RESUMO

BACKGROUND: The human DKC1 gene is causative of X-linked dyskeratosis congenita (X-DC), a syndrome characterized by mucocutaneous features, bone marrow failure, tumor susceptibility, perturbation of stem cell function, and premature aging. DKC1 is thought to produce a single protein, named dyskerin, which shows strict nucleolar localization and participates in at least two distinct nuclear functional complexes: the H/ACA small nucleolar ribonucleoproteic complex involved in RNA pseudouridylation and the active telomerase complex. METHODS: By bioinformatics and molecular analyses we identified a DKC1 splice variant able to encode a truncated form of dyskerin, confirmed its active expression in diverse human tissues by RT-PCR, and showed by immunoblotting and immunocytochemistry experiments that it actually encodes a novel protein. Stably transfected clones over-expressing the new isoform were analyzed for growth, morphology and adhesion properties. RESULTS: Our results show that DKC1 encodes a new alternatively spliced mRNA able to direct the synthesis of a variant dyskerin with unexpected cytoplasmic localization. Intriguingly, when over-expressed in HeLa cells, the new isoform promotes cell to cell and cell to substratum adhesion, increases the cell proliferation rate and leads to cytokeratin hyper-expression. CONCLUSIONS AND GENERAL SIGNIFICANCE: Our results highlight a novel degree of complexity and regulation of the human DKC1 gene and reveal that it can play a further, unpredicted role in cell adhesion. The identification of a dyskerin cytoplasmic variant reinforces the view that other mechanisms, in addition to telomere instability, can significantly contribute to the pathogenesis of the X-DC, and suggests that DKC1 nucleolar and cytoplasmic functions might cumulatively account for the plethora of manifestations displayed by this syndrome.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Citoplasma/metabolismo , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Western Blotting , Proteínas de Ciclo Celular/genética , Células HeLa , Humanos , Imuno-Histoquímica , Proteínas Nucleares/genética , Isoformas de Proteínas/genética
20.
Biochem J ; 433(2): 345-55, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21050179

RESUMO

Recently, extracellular RNases of the RNase A superfamily, with the characteristic CKxxNTF sequence signature, have been identified in fish. This has led to the recognition that these RNases are present in the whole vertebrate subphylum. In fact, they comprise the only enzyme family unique to vertebrates. Four RNases from zebrafish (Danio rerio) have been previously reported and have a very low RNase activity; some of these are endowed, like human angiogenin, with powerful angiogenic and bactericidal activities. In the present paper, we report the three-dimensional structure, the thermodynamic behaviour and the biological properties of a novel zebrafish RNase, ZF-RNase-5. The investigation of its structural and functional properties, extended to all other subfamily members, provides an inclusive description of the whole zebrafish RNase subfamily.


Assuntos
Ribonuclease Pancreático/química , Ribonucleases/química , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Ribonuclease Pancreático/genética , Ribonuclease Pancreático/metabolismo , Ribonucleases/genética , Ribonucleases/metabolismo , Alinhamento de Sequência , Peixe-Zebra/embriologia , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...