Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 5212, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34471133

RESUMO

The autophagic degradation of misfolded and ubiquitinated proteins is important for cellular homeostasis. In this process, which is governed by cargo receptors, ubiquitinated proteins are condensed into larger structures and subsequently become targets for the autophagy machinery. Here we employ in vitro reconstitution and cell biology to define the roles of the human cargo receptors p62/SQSTM1, NBR1 and TAX1BP1 in the selective autophagy of ubiquitinated substrates. We show that p62 is the major driver of ubiquitin condensate formation. NBR1 promotes condensate formation by equipping the p62-NBR1 heterooligomeric complex with a high-affinity UBA domain. Additionally, NBR1 recruits TAX1BP1 to the ubiquitin condensates formed by p62. While all three receptors interact with FIP200, TAX1BP1 is the main driver of FIP200 recruitment and thus the autophagic degradation of p62-ubiquitin condensates. In summary, our study defines the roles of all three receptors in the selective autophagy of ubiquitin condensates.


Assuntos
Autofagia/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Ubiquitina/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Transporte , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Neoplasias/genética , Domínios Proteicos , Proteínas de Ligação a RNA/metabolismo , Proteína Sequestossoma-1/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
2.
Elife ; 92020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32851973

RESUMO

Eukaryotes have evolved various quality control mechanisms to promote proteostasis in the endoplasmic reticulum (ER). Selective removal of certain ER domains via autophagy (termed as ER-phagy) has emerged as a major quality control mechanism. However, the degree to which ER-phagy is employed by other branches of ER-quality control remains largely elusive. Here, we identify a cytosolic protein, C53, that is specifically recruited to autophagosomes during ER-stress, in both plant and mammalian cells. C53 interacts with ATG8 via a distinct binding epitope, featuring a shuffled ATG8 interacting motif (sAIM). C53 senses proteotoxic stress in the ER lumen by forming a tripartite receptor complex with the ER-associated ufmylation ligase UFL1 and its membrane adaptor DDRGK1. The C53/UFL1/DDRGK1 receptor complex is activated by stalled ribosomes and induces the degradation of internal or passenger proteins in the ER. Consistently, the C53 receptor complex and ufmylation mutants are highly susceptible to ER stress. Thus, C53 forms an ancient quality control pathway that bridges selective autophagy with ribosome-associated quality control in the ER.


For cells to survive they need to be able to remove faulty or damaged components. The ability to recycle faulty parts is so crucial that some of the molecular machinery responsible is the same across the plant and animal kingdoms. One of the major recycling pathways cells use is autophagy, which labels damaged proteins with molecular tags that say 'eat-me'. Proteins called receptors then recognize these tags and move the faulty component into vesicles that transport the cargo to a specialized compartment that recycles broken parts. Cells make and fold around 40% of their proteins at a site called the endoplasmic reticulum, or ER for short. However, the process of folding and synthesizing proteins is prone to errors. For example, when a cell is under stress this can cause a 'stall' in production, creating a build-up of faulty, partially constructed proteins that are toxic to the cell. There are several quality control systems which help recognize and correct these errors in production. Yet, it remained unclear how autophagy and these quality control mechanisms are linked together. Here, Stephani, Picchianti et al. screened for receptors that regulate the recycling of faulty proteins by binding to the 'eat-me' tags. This led to the identification of a protein called C53, which is found in both plant and animal cells. Microscopy and protein-protein interaction tests showed that C53 moves into transport vesicles when the ER is under stress and faulty proteins start to build-up. Once there, C53 interacts with two proteins embedded in the wall of the endoplasmic reticulum. These proteins form part of the quality control system that senses stalled protein production, labelling the stuck proteins with 'eat-me' tags. Together with C53, they identify and remove half-finished proteins before they can harm the cell. The fact that C53 works in the same way in both plant and human cells suggests that many species might use this receptor to recycle stalled proteins. This has implications for a wide range of research areas, from agriculture to human health. A better understanding of C53 could be beneficial for developing stress-resilient crops. It could also aid research into human diseases, such as cancer and viral infections, that have been linked to C53 and its associated proteins.


Assuntos
Autofagia/fisiologia , Estresse do Retículo Endoplasmático/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas de Ciclo Celular/metabolismo , Homeostase , Humanos , Proteostase/fisiologia , Proteínas Supressoras de Tumor/metabolismo
3.
J Mol Biol ; 432(1): 123-134, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31351898

RESUMO

Autophagy is a major cellular degradation pathway, which mediates the delivery of cytoplasmic cargo material into lysosomes. This is achieved by the specific sequestration of the cargo within double-membrane vesicles, the autophagosomes, which form de novo around this material. Autophagosome formation requires the action of a conserved set of factors, which act in hierarchical manner. The ULK1/Atg1 kinase complex is one of the most upstream acting components of the autophagy machinery. Here we discuss recent insights into the mechanisms of ULK1/Atg1 recruitment and activation at the cargo during selective autophagy. In particular, we will focus on the role of cargo receptors such as p62 and NDP52 during this process and discuss the emerging concept that cargo receptors act upstream of the autophagy machinery during cargo-induced selective autophagy.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Autofagia , Animais , Autofagossomos/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Ativação Enzimática , Humanos , Lisossomos/metabolismo , Macroautofagia , Fosforilação , Proteínas Quinases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Autophagy ; 15(8): 1475-1477, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31066340

RESUMO

Macroautophagy/autophagy mediates the degradation of ubiquitinated aggregated proteins within lysosomes in a process known as aggrephagy. The cargo receptor SQSTM1/p62 condenses aggregated proteins into larger structures and links them to the nascent autophagosomal membrane (phagophore). How the condensation reaction and autophagosome formation are coupled is unclear. We recently discovered that a region of SQSTM1 containing its LIR motif directly interacts with RB1CC1/FIP200, a protein acting at early stages of autophagosome formation. Determination of the structure of the C-terminal region of RB1CC1 revealed a claw-shaped domain. Using a structure-function approach, we show that the interaction of SQSTM1 with the RB1CC1 claw domain is crucial for the productive recruitment of the autophagy machinery to ubiquitin-positive condensates and their subsequent degradation by autophagy. We also found that concentrated Atg8-family proteins on the phagophore displace RB1CC1 from SQSTM1, suggesting an intrinsic directionality in the process of autophagosome formation. Ultimately, our study reveals how the interplay of SQSTM1 and RB1CC1 couples cargo condensation to autophagosome formation.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Proteína Sequestossoma-1/metabolismo , Ubiquitina/metabolismo , Animais , Autofagossomos/metabolismo , Humanos , Modelos Biológicos , Ligação Proteica
5.
Mol Cell ; 74(2): 330-346.e11, 2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30853400

RESUMO

The autophagy cargo receptor p62 facilitates the condensation of misfolded, ubiquitin-positive proteins and their degradation by autophagy, but the molecular mechanism of p62 signaling to the core autophagy machinery is unclear. Here, we show that disordered residues 326-380 of p62 directly interact with the C-terminal region (CTR) of FIP200. Crystal structure determination shows that the FIP200 CTR contains a dimeric globular domain that we designated the "Claw" for its shape. The interaction of p62 with FIP200 is mediated by a positively charged pocket in the Claw, enhanced by p62 phosphorylation, mutually exclusive with the binding of p62 to LC3B, and it promotes degradation of ubiquitinated cargo by autophagy. Furthermore, the recruitment of the FIP200 CTR slows the phase separation of ubiquitinated proteins by p62 in a reconstituted system. Our data provide the molecular basis for a crosstalk between cargo condensation and autophagosome formation.


Assuntos
Autofagossomos/metabolismo , Conformação Proteica , Proteínas Tirosina Quinases/química , Proteína Sequestossoma-1/química , Autofagossomos/química , Autofagia/genética , Proteínas Relacionadas à Autofagia , Cristalografia por Raios X , Humanos , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Mapas de Interação de Proteínas/genética , Proteínas Tirosina Quinases/genética , Proteólise , Proteína Sequestossoma-1/genética , Transdução de Sinais/genética , Ubiquitina/química , Ubiquitina/genética
6.
J Struct Biol ; 196(1): 29-36, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27251905

RESUMO

Macro-autophagy (autophagy) is a conserved catabolic pathway for the degradation of cytoplasmic material in the lysosomal system. This is achieved by the sequestration of the cytoplasmic cargo material within double membrane-bound vesicles that fuse with lysosomes, wherein the vesicle's inner membrane and the cargo are degraded. Autophagosomes form in a de novo manner and their precursors are initially detected as small membrane structures that are referred to as isolation membranes. The isolation membranes gradually expand and subsequently close to give rise to autophagosomes. Many proteins required to form autophagosomes have been identified but how they act mechanistically is still enigmatic. Here we critically review reconstitution approaches employed to decipher the inner working of the fascinating autophagy machinery.


Assuntos
Autofagossomos , Biogênese de Organelas , Animais , Autofagossomos/ultraestrutura , Humanos , Membranas , Proteínas
7.
Elife ; 4: e08941, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26413874

RESUMO

Autophagy is a major pathway for the clearance of harmful material from the cytoplasm. During autophagy, cytoplasmic material is delivered into the lysosomal system by organelles called autophagosomes. Autophagosomes form in a de novo manner and, in the course of their formation, isolate cargo material from the rest of the cytoplasm. Cargo specificity is conferred by autophagic cargo receptors that selectively link the cargo to the autophagosomal membrane decorated with ATG8 family proteins such as LC3B. Here we show that the human cargo receptor p62/SQSTM-1 employs oligomerization to stabilize its interaction with LC3B and linear ubiquitin when they are clustered on surfaces. Thus, oligomerization enables p62 to simultaneously select for the isolation membrane and the ubiquitinated cargo. We further show in a fully reconstituted system that the interaction of p62 with ubiquitin and LC3B is sufficient to bend the membrane around the cargo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Autofagia , Membranas Intracelulares/metabolismo , Multimerização Proteica , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Proteína Sequestossoma-1 , Ubiquitina/metabolismo
8.
J Biol Chem ; 290(9): 5298-310, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25548288

RESUMO

Ubiquitin signaling on chromatin is linked to diverse aspects of genome regulation, including gene expression and DNA repair. The yeast RING E3 ligase Bre1 combines with the E2 Rad6 to monoubiquitinate histone H2B during transcription. Little is known about how Bre1 directs Rad6 toward transferring only a single ubiquitin to a specific lysine residue. Using a defined in vitro system, we show that the Bre1 RING domain interaction with Rad6 is minimally sufficient to monoubiquitinate nucleosomes at histone H2B Lys-123. In addition, we reveal a cluster of charged residues on the Bre1 RING domain that is critical for recognizing the nucleosome surface. Notably, a second Rad6 binding domain of Bre1 interacts with the E2 backside and potentiates ubiquitin transfer to the substrate. Taken together, our study establishes a molecular framework for how distinct RING and non-RING E3 elements cooperate to regulate E2 reactivity and substrate selection during gene expression.


Assuntos
Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação , Sequência de Aminoácidos , Sítios de Ligação/genética , Immunoblotting , Lisina/genética , Lisina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleossomos/genética , Nucleossomos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/genética
9.
Nucleic Acids Res ; 41(7): 4093-103, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23460202

RESUMO

The MUTYH DNA-glycosylase is indirectly engaged in the repair of the miscoding 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxodG) lesion by removing adenine erroneously incorporated opposite the oxidized purine. Inherited biallelic mutations in the MUTYH gene are responsible for a recessive syndrome, the MUTYH-associated polyposis (MAP), which confers an increased risk of colorectal cancer. In this study, we functionally characterized the Q338H variant using recombinant proteins, as well as cell-based assays. This is a common variant among human colorectal cancer genes, which is generally considered, unrelated to the MAP phenotype but recently indicated as a low-penetrance allele. We demonstrate that the Q338H variant retains a wild-type DNA-glycosylase activity in vitro, but it shows a reduced ability to interact with the replication sensor RAD9:RAD1:HUS1 (9-1-1) complex. In comparison with Mutyh(-)(/)(-) mouse embryo fibroblasts expressing a wild-type MUTYH cDNA, the expression of Q338H variant was associated with increased levels of DNA 8-oxodG, hypersensitivity to oxidant and accumulation of the population in the S phase of the cell cycle. Thus, an inefficient interaction of MUTYH with the 9-1-1 complex leads to a repair-defective phenotype, indicating that a proper communication between MUTYH enzymatic function and the S phase checkpoint is needed for effective repair of oxidative damage.


Assuntos
DNA Glicosilases/fisiologia , Reparo do DNA , Substituição de Aminoácidos , Animais , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Camundongos , Camundongos Knockout , Mutação , Estresse Oxidativo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...