Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(6-2): 065208, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464686

RESUMO

We show that an ultra-high-pressure plasma can be generated when an aligned nanowire is irradiated by a laser with relativistic transparent intensity. Using a particle-in-cell simulation, we demonstrate that the expanded plasma following the z pinch becomes relativistically transparent and compressed longitudinally by the oscillating component of the ponderomotive force. The compressed structure persists throughout the pulse duration with a maximum pressure of 40Tbar when irradiated with a laser at an intensity of 10^{23}Wcm^{-2}, 5× higher than the z-pinch pressure. These results suggest an alternative approach to extending the current attainable pressure in the laboratory.

2.
Phys Rev E ; 100(4-1): 043207, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31770899

RESUMO

The free-free opacity in dense systems is a property that both tests our fundamental understanding of correlated many-body systems, and is needed to understand the radiative properties of high energy-density plasmas. Despite its importance, predictive calculations of the free-free opacity remain challenging even in the condensed matter phase for simple metals. Here we show how the free-free opacity can be modelled at finite-temperatures via time-dependent density functional theory, and illustrate the importance of including local field corrections, core polarization, and self-energy corrections. Our calculations for ground-state Al are shown to agree well with experimental opacity measurements performed on the Artemis laser facility across a wide range of extreme ultraviolet wavelengths. We extend our calculations across the melt to the warm-dense matter regime, finding good agreement with advanced plasma models based on inverse bremsstrahlung at temperatures above 10 eV.

3.
J Phys Condens Matter ; 27(16): 164204, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25835083

RESUMO

The recent demonstration of saturable absorption and negative optical conductivity in the Terahertz range in graphene has opened up new opportunities for optoelectronic applications based on this and other low dimensional materials. Recently, population inversion across the Dirac point has been observed directly by time- and angle-resolved photoemission spectroscopy (tr-ARPES), revealing a relaxation time of only ∼130 femtoseconds. This severely limits the applicability of single layer graphene to, for example, Terahertz light amplification. Here we use tr-ARPES to demonstrate long-lived population inversion in bilayer graphene. The effect is attributed to the small band gap found in this compound. We propose a microscopic model for these observations and speculate that an enhancement of both the pump photon energy and the pump fluence may further increase this lifetime.

4.
Rev Sci Instrum ; 85(10): 103117, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362381

RESUMO

We present a simple electron time of flight spectrometer for time resolved photoelectron spectroscopy of liquid samples using a vacuum ultraviolet (VUV) source produced by high-harmonic generation. The field free spectrometer coupled with the time-preserving monochromator for the VUV at the Artemis facility of the Rutherford Appleton Laboratory achieves an energy resolution of 0.65 eV at 40 eV with a sub 100 fs temporal resolution. A key feature of the design is a differentially pumped drift tube allowing a microliquid jet to be aligned and started at ambient atmosphere while preserving a pressure of 10(-1) mbar at the micro channel plate detector. The pumping requirements for photoelectron (PE) spectroscopy in vacuum are presented, while the instrument performance is demonstrated with PE spectra of salt solutions in water. The capability of the instrument for time resolved measurements is demonstrated by observing the ultrafast (50 fs) vibrational excitation of water leading to temporary proton transfer.


Assuntos
Espectroscopia Fotoeletrônica/instrumentação , Soluções/química , Raios Ultravioleta , Vácuo , Calibragem , Desenho de Equipamento , Fatores de Tempo
5.
Faraday Discuss ; 171: 195-218, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25415646

RESUMO

We show that rotational line spectra of molecular clusters with near zero permanent dipole moments can be observed using impulsive alignment. Aligned rotational wavepackets were generated by non-resonant interaction with intense femtosecond laser pump pulses and then probed using Coulomb explosion by a second, time-delayed femtosecond laser pulse. By means of a Fourier transform a rich spectrum of rotational eigenstates was derived. For the smallest cluster, C(2)H(2)-He, we were able to establish essentially all rotational eigenstates up to the dissociation threshold on the basis of theoretical level predictions. The C(2)H(2)-He complex is found to exhibit distinct features of large amplitude motion and very early onset of free internal rotor energy level structure.

6.
Phys Rev Lett ; 113(4): 043004, 2014 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-25105616

RESUMO

Rotational wave packets of the weakly bound C(2)H(2)-He complex have been created using impulsive alignment. The coherent rotational dynamics were monitored for 600 ps enabling extraction of a frequency spectrum showing multiple rotational energy levels up to J = 4. spectrum has been combined with ab initio calculations to show that the complex has a highly delocalized structure and is bound only by ca. 7 cm(-1). The experiments demonstrate how highly featured rotational spectra can be obtained from an extremely cold environment where only the lowest rotational energy states are initially populated.

7.
Nat Mater ; 12(12): 1119-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24097235

RESUMO

The optical properties of graphene are made unique by the linear band structure and the vanishing density of states at the Dirac point. It has been proposed that even in the absence of a bandgap, a relaxation bottleneck at the Dirac point may allow for population inversion and lasing at arbitrarily long wavelengths. Furthermore, efficient carrier multiplication by impact ionization has been discussed in the context of light harvesting applications. However, all of these effects are difficult to test quantitatively by measuring the transient optical properties alone, as these only indirectly reflect the energy- and momentum-dependent carrier distributions. Here, we use time- and angle-resolved photoemission spectroscopy with femtosecond extreme-ultraviolet pulses to directly probe the non-equilibrium response of Dirac electrons near the K-point of the Brillouin zone. In lightly hole-doped epitaxial graphene samples, we explore excitation in the mid- and near-infrared, both below and above the minimum photon energy for direct interband transitions. Whereas excitation in the mid-infrared results only in heating of the equilibrium carrier distribution, interband excitations give rise to population inversion, suggesting that terahertz lasing may be possible. However, in neither excitation regime do we find any indication of carrier multiplication, questioning the applicability of graphene for light harvesting.

8.
J Am Soc Mass Spectrom ; 24(9): 1366-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23817831

RESUMO

High power femtosecond laser pulses have unique properties that could lead to their application as ionization or activation sources in mass spectrometry. By concentrating many photons into pulse lengths approaching the timescales associated with atomic motion, very strong electric field strengths are generated, which can efficiently ionize and fragment molecules without the need for resonant absorption. However, the complex interaction between these pulses and biomolecular species is not well understood. To address this issue, we have studied the interaction of intense, femtosecond pulses with a number of amino acids and small peptides. Unlike previous studies, we have used neutral forms of these molecular targets, which allowed us to investigate dissociation of radical cations without the spectra being complicated by the action of mobile protons. We found fragmentation was dominated by fast, radical-initiated dissociation close to the charge site generated by the initial ionization or from subsequent ultrafast migration of this charge. Fragments with lower yields, which are useful for structural determinations, were also observed and attributed to radical migration caused by hydrogen atom transfer within the molecule.


Assuntos
Aminoácidos/química , Espectrometria de Massas/métodos , Peptídeos/química , Íons/química , Lasers , Modelos Moleculares
9.
Phys Rev Lett ; 111(2): 027403, 2013 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-23889442

RESUMO

The ultrafast dynamics of excited carriers in graphene is closely linked to the Dirac spectrum and plays a central role for many electronic and optoelectronic applications. Harvesting energy from excited electron-hole pairs, for instance, is only possible if these pairs can be separated before they lose energy to vibrations, merely heating the lattice. Until now, the hot carrier dynamics in graphene could only be accessed indirectly. Here, we present a dynamical view on the Dirac cone by time- and angle-resolved photoemission spectroscopy. This allows us to show the quasi-instant thermalization of the electron gas to a temperature of ≈2000 K, to determine the time-resolved carrier density, and to disentangle the subsequent decay into excitations of optical phonons and acoustic phonons (directly and via supercollisions).

10.
Appl Opt ; 51(12): 2057-61, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-22534916

RESUMO

Accurate values of the extreme ultraviolet (EUV) optical properties of materials are required to make EUV optics such as filters and multilayer mirrors. The optical properties of aluminum studied in this report are required, in particular, as aluminum is used as an EUV filter material. The complex refractive index of solid aluminum and the imaginary part of the refractive index of solid iron between 17 eV and 39 eV have been measured using EUV harmonics produced from an 800 nm laser focused to 10(14) Wcm(2) in an argon gas jet impinging on a double slit interferometer.

11.
Phys Chem Chem Phys ; 14(18): 6289-97, 2012 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-22322861

RESUMO

Laser induced acoustic desorption (LIAD) has been used for the first time to study the parent ion production and fragmentation mechanisms of a biological molecule in an intense femtosecond (fs) laser field. The photoacoustic shock wave generated in the analyte substrate (thin Ta foil) has been simulated using the hydrodynamic HYADES code, and the full LIAD process has been experimentally characterised as a function of the desorption UV-laser pulse parameters. Observed neutral plumes of densities >10(9) cm(-3) which are free from solvent or matrix contamination demonstrate the suitability and potential of the source for studying ultrafast dynamics in the gas phase using fs laser pulses. Results obtained with phenylalanine show that through manipulation of fundamental femtosecond laser parameters (such as pulse length, intensity and wavelength), energy deposition within the molecule can be controlled to allow enhancement of parent ion production or generation of characteristic fragmentation patterns. In particular by reducing the pulse length to a timescale equivalent to the fastest vibrational periods in the molecule, we demonstrate how fragmentation of the molecule can be minimised whilst maintaining a high ionisation efficiency.


Assuntos
Acústica , Gases/química , Lasers , Fenilalanina/química , Temperatura , Cinética , Tantálio/química
12.
Phys Rev Lett ; 107(17): 177402, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22107580

RESUMO

We use time- and angle-resolved photoemission spectroscopy with sub-30-fs extreme-ultraviolet pulses to map the time- and momentum-dependent electronic structure of photoexcited 1T-TaS(2). This compound is a two-dimensional Mott insulator with charge-density wave ordering. Charge order, evidenced by splitting between occupied subbands at the Brillouin zone boundary, melts well before the lattice responds. This challenges the view of a charge-density wave caused by electron-phonon coupling and Fermi-surface nesting alone, and suggests that electronic correlations play a key role in driving charge order.

13.
Opt Express ; 19(20): 19169-81, 2011 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-21996859

RESUMO

Extreme-ultraviolet high-order-harmonic pulses with 1.6·10(7) photons/pulse at 32.5 eV have been separated from multiple harmonic orders by a time-preserving monochromator using a single grating in the off-plane mount. This grating geometry gives minimum temporal broadening and high efficiency. The pulse duration of the monochromatized harmonic pulses has been measured to be in the range 20 to 30 fs when the harmonic process is driven by an intense 30 fs near-infrared pulse. The harmonic photon energy is tunable between 12 and 120 eV. The instrument is used in the monochromatized branch of the Artemis beamline at the Central Laser Facility (UK) for applications in ultrafast electron spectroscopy.


Assuntos
Fótons , Espectroscopia de Perda de Energia de Elétrons/instrumentação , Raios Ultravioleta , Desenho de Equipamento
14.
Rev Sci Instrum ; 82(4): 043103, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21528991

RESUMO

In this paper an algorithm for extracting spectral information from signals containing a series of narrow periodic impulses is presented. Such signals can typically be acquired by pickup detectors from the image-charge of ion bunches oscillating in a linear electrostatic ion trap, where frequency analysis provides a scheme for high-resolution mass spectrometry. To provide an improved technique for such frequency analysis, we introduce the CHIMERA algorithm (Comb-sampling for High-resolution IMpulse-train frequency ExtRAaction). This algorithm utilizes a comb function to generate frequency coefficients, rather than using sinusoids via a Fourier transform, since the comb provides a superior match to the data. This new technique is developed theoretically, applied to synthetic data, and then used to perform high resolution mass spectrometry on real data from an ion trap. If the ions are generated at a localized point in time and space, and the data is simultaneously acquired with multiple pickup rings, the method is shown to be a significant improvement on Fourier analysis. The mass spectra generated typically have an order of magnitude higher resolution compared with that obtained from fundamental Fourier frequencies, and are absent of large contributions from harmonic frequency components.

15.
Opt Express ; 18(7): 6853-62, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389704

RESUMO

We report observations and analysis of high harmonic generation driven by a superposition of fields at 1290 nm and 780 nm. These fields are not commensurate in frequency and the superposition leads to an increase in the yield of the mid-plateau harmonics of more than two orders of magnitude compared to using the 1290 nm field alone. Significant extension of the cut-off photon energy is seen even by adding only a small amount of the 780 nm field. These observations are explained by calculations performed in the strong field approximation. Most importantly we find that enhancement is found to arise as a consequence of both increased ionization in the sum-field and modification of the electron trajectories leading to an earlier return time. The enhanced yield even when using modest intensity fields of 5 x 10(13) Wcm(-2) is extended to the 80 eV range and is a promising route to provide a greater photon number for applications in XUV imaging and time-resolved experiments at a high repetition rate.


Assuntos
Óptica e Fotônica , Óxido de Alumínio/química , Campos Eletromagnéticos , Elétrons , Desenho de Equipamento , Íons , Lasers , Dinâmica não Linear , Distribuição Normal , Fótons , Física/métodos , Titânio/química
16.
Opt Express ; 18(3): 3174-80, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20174156

RESUMO

The emerging techniques of molecular spectroscopy by high order harmonic generation have hitherto been conducted only with Ti:Sapphire lasers which are restricted to molecules with high ionization potentials. In order to gain information on the molecular structure, a broad enough range of harmonics is required. This implies using high laser intensities which would saturate the ionization of most molecular systems of interest, e.g. organic molecules. Using a laser at 1300 nm, we are able to extend the technique to molecules with relatively low ionization potentials (approximately 11 eV), observing wide harmonic spectra reaching up to 60 eV. This energy range improves spatial resolution of the high harmonic spectroscopy to the point where interference minima in harmonic spectra of N(2)O and C(2)H(2) can be observed.

17.
Phys Rev Lett ; 98(20): 203007, 2007 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-17677693

RESUMO

The effects of electronic structure and symmetry are observed in laser driven high-order harmonic generation for laser aligned conjugated polyatomic molecular systems. The dependence of the harmonic yield on the angle between the molecular axis and the polarization of the driving laser field is seen to contain the fingerprint of the highest occupied molecular orbitals in acetylene and allene, a good quantitative agreement with calculations employing the strong field approximation was found. These measurements support the extension of the recently proposed molecular orbital imaging techniques beyond simple diatomic molecules to larger molecular systems.

18.
Phys Rev Lett ; 98(16): 163001, 2007 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-17501417

RESUMO

The experimental study of molecular dissociation of H2+ by intense laser pulses is complicated by the fact that the ions are initially produced in a wide range of vibrational states, each of which responds differently to the laser field. An electrostatic storage device has been used to radiatively cool HD+ ions enabling the observation of above threshold dissociation from the ground vibrational state by 40 fs laser pulses at 800 nm. At the highest intensities used, dissociation through the absorption of at least four photons is found to be the dominant process.

19.
Phys Med Biol ; 47(19): 3543-55, 2002 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-12408481

RESUMO

The efficiency of producing biological damage varies with radiation quality. Conventional explanations rely on spatial differences in the radiation track structure; generally however there are also very large temporal differences in delivery of the radiation at the cellular level. High-LET radiation normally deposits substantial amounts of energy by individual heavily ionizing tracks on a timescale of the order of picoseconds. By contrast each low-LET radiation track deposits a small amount of energy. Many of these tracks, distributed over the whole cell, are required to deliver an equivalent dose to a high-LET track and they are usually delivered over much longer timescales (typically seconds) during which chemical, biochemical and biological processes are occurring. In this paper the design, characterization and initial application of a high-brightness, laser-plasma ultrasoft x-ray source is described. This has been used to investigate the importance of the temporal differences by irradiating mammalian cells with an energy deposition with spatial properties of low-LET radiation and temporal properties similar to high-LET radiation. The present system delivers a typical dose, to the incident surface of the cells, of 0.12 Gy per pulse delivered in <10 ps. The capabilities of the x-ray source were tested by determining the survival of V79-4 hamster cells irradiated with picosecond pulses of ultrasoft x-rays under aerobic and anaerobic conditions, which were found to be consistent with previously published non pulsed data with x-rays of similar energy. These results support the expectation that the disappearance of an oxygen effect for high-LET radiation particles is due to their spatial properties rather than the very short timescale of each particle traversal. For other effects, particularly non-targeted phenomena such as induced genomic instability, expectations may be less clear cut.


Assuntos
Transferência de Energia , Animais , Linhagem Celular , Cricetinae , Relação Dose-Resposta à Radiação , Lasers , Oxigênio/metabolismo , Radiometria , Fatores de Tempo , Raios X
20.
Appl Opt ; 36(22): 5461-70, 1997 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-18259366

RESUMO

A Monte Carlo ray-trace model of nonideal microchannel plate (MCP) x-ray optics is described. The model takes into account angular misalignments, both transverse and axial, between the channels and the multifiber bundles; pincushion distortion of the square channels; radiusing of the channel vertices; and scattering from microroughness of the channel walls. The model also takes into account the spectrum and nonisotropic nature of the illuminating radiation. Using optical, scanning electron, and atomic force microscopies, as well as x-ray scattering data obtained with a laser plasma x-ray source, we have determined a partial error budget for the focusing action of a real square-pore MCP, leaving only the interchannel long-axis misalignment to be found by comparison of simulated and measured images. The power of the Monte Carlo model in directing the future development of MCP optics is illustrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA