Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38067411

RESUMO

The absorption/desorption of water vapor by bambus[6]uril (Bu[6]) has been studied. According to kinetic experiments, the absorption capacity of Bu[6] is 4 moles of water per 1 mole of Bu[6] with the absorption duration of 20 min and the complete desorption duration of 100 min. Experimental rate constants for water vapor absorption and desorption by Bu[6] have been determined to be 0.166 min-1 and 0.0221 min-1, respectively. The obtained results are in agreement with theoretical calculations using the DFT method. A hypothetical structure of bambus[6]uril tetrahydrate (Bu[6]·4H2O) has been proposed based on the experimental and DFT data.

2.
Materials (Basel) ; 16(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068001

RESUMO

In this present investigation, a novel series of composite materials based on porous inorganic compounds-hydroxyapatite and diatomite-have been innovatively formulated for the first time through surface modification employing the promising macromolecular compound, bambus[6]uril. The process entailed the application of a bambus[6]uril dispersion in water onto the surfaces of hydroxyapatite and diatomite. Extensive characterization was carried out, involving IR spectroscopy and SEM. The materials underwent assessment for hemolytic effects and plasma protein adsorption. The results revealed that materials containing surface-bound bambus[6]uril did not demonstrate inherent hemolytic effects, laying a robust groundwork for their use as biocompatible materials. These findings hold significant promise as an alternative pathway for the development of durable and efficient bio-composites, potentially unveiling supramolecular strategies incorporating encapsulated bambus[6]urils in analogous processes.

3.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003315

RESUMO

The prevalence of numerous infectious diseases has emerged as a grave concern within the realm of healthcare. Currently, the issue of antibiotic resistance is compelling scientists to explore novel treatment approaches. To combat these infectious diseases, various treatment methods have been developed, harnessing cutting-edge disinfecting nanomaterials. Among the range of metallic nanoparticles employed in medicine, silver nanoparticles (AgNPs) stand out as both highly popular and well-suited for the task. They find extensive utility in cancer diagnosis and therapies and as effective antibacterial agents. The interaction between silver and bacterial cells induces significant structural and morphological alterations, ultimately leading to cell demise. In this study, nanoparticles based on silver and bambusuril[6] (BU[6]) were developed for the first time. These NPs can be used for different biomedical purposes. A simple, single-step, and effective synthesis method was employed to produce bambusuril[6]-protected silver chloride nanoparticles (BU[6]-Ag/AgCl NPs) through the complexation of BU[6] with silver nitrate. The NPs were characterized using X-ray phase analysis (XPS), infrared spectroscopy (IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). When the SEM images were examined, it was seen that the synthesized BU[6]-Ag/AgCl NPs were distributed with homogeneous sizes, and the synthesized NPs were mostly spherical and cubic. The EDS spectra of BU[6]-Ag/AgCl NPs demonstrated the presence of Ag, Cl, and all expected elements. BU[6]-Ag/AgCl NPs showed high antibacterial activity against both E. coli and S. aureus bacteria.


Assuntos
Doenças Transmissíveis , Nanopartículas Metálicas , Humanos , Nanopartículas Metálicas/química , Staphylococcus aureus , Escherichia coli , Prata , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...