Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 5(3)2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522780

RESUMO

Using live microbes as therapeutic candidates is a strategy that has gained traction across multiple therapeutic areas. In the skin, commensal microorganisms play a crucial role in maintaining skin barrier function, homeostasis, and cutaneous immunity. Alterations of the homeostatic skin microbiome are associated with a number of skin diseases. Here, we present the design of an engineered commensal organism, Staphylococcus epidermidis, for use as a live biotherapeutic product (LBP) candidate for skin diseases. The development of novel bacterial strains whose growth can be controlled without the use of antibiotics or genetic elements conferring antibiotic resistance enables modulation of therapeutic exposure and improves safety. We therefore constructed an auxotrophic strain of S. epidermidis that requires exogenously supplied d-alanine. The S. epidermidis NRRL B-4268 Δalr1 Δalr2 Δdat strain (SEΔΔΔ) contains deletions of three biosynthetic genes: two alanine racemase genes, alr1 and alr2 (SE1674 and SE1079), and the d-alanine aminotransferase gene, dat (SE1423). These three deletions restricted growth in d-alanine-deficient medium, pooled human blood, and skin. In the presence of d-alanine, SEΔΔΔ colonized and increased expression of human ß-defensin 2 in cultured human skin models in vitro. SEΔΔΔ showed a low propensity to revert to d-alanine prototrophy and did not form biofilms on plastic in vitro. These studies support the potential safety and utility of SEΔΔΔ as a live biotherapeutic strain whose growth can be controlled by d-alanine.IMPORTANCE The skin microbiome is rich in opportunities for novel therapeutics for skin diseases, and synthetic biology offers the advantage of providing novel functionality or therapeutic benefit to live biotherapeutic products. The development of novel bacterial strains whose growth can be controlled without the use of antibiotics or genetic elements conferring antibiotic resistance enables modulation of therapeutic exposure and improves safety. This study presents the design and in vitro evidence of a skin commensal whose growth can be controlled through d-alanine. The basis of this strain will support future clinical studies of this strain in humans.


Assuntos
Alanina/metabolismo , Terapia Biológica/métodos , Pele/microbiologia , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/genética , Antibacterianos/farmacologia , Biofilmes/crescimento & desenvolvimento , Humanos , Microbiota/efeitos dos fármacos , Simbiose
2.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878081

RESUMO

The foot-and-mouth disease virus (FMDV) afflicts livestock in more than 80 countries, limiting food production and global trade. Production of foot-and-mouth disease (FMD) vaccines requires cytosolic expression of the FMDV 3C protease to cleave the P1 polyprotein into mature capsid proteins, but the FMDV 3C protease is toxic to host cells. To identify less-toxic isoforms of the FMDV 3C protease, we screened 3C mutants for increased transgene output in comparison to wild-type 3C using a Gaussia luciferase reporter system. The novel point mutation 3C(L127P) increased yields of recombinant FMDV subunit proteins in mammalian and bacterial cells expressing P1-3C transgenes and retained the ability to process P1 polyproteins from multiple FMDV serotypes. The 3C(L127P) mutant produced crystalline arrays of FMDV-like particles in mammalian and bacterial cells, potentially providing a practical method of rapid, inexpensive FMD vaccine production in bacteria.IMPORTANCE The mutant FMDV 3C protease L127P significantly increased yields of recombinant FMDV subunit antigens and produced virus-like particles in mammalian and bacterial cells. The L127P mutation represents a novel advancement for economical FMD vaccine production.


Assuntos
Substituição de Aminoácidos , Cisteína Endopeptidases/imunologia , Vírus da Febre Aftosa/imunologia , Mutação de Sentido Incorreto , Proteínas Virais/imunologia , Vacinas Virais/imunologia , Proteases Virais 3C , Animais , Cisteína Endopeptidases/genética , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/genética , Células HEK293 , Humanos , Proteínas Virais/genética , Vacinas Virais/genética
3.
J Virol ; 81(13): 7124-35, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17459931

RESUMO

Previously, we showed that type I interferon (alpha/beta interferon [IFN-alpha/beta]) can inhibit foot-and-mouth disease virus (FMDV) replication in cell culture, and swine inoculated with 10(9) PFU of human adenovirus type 5 expressing porcine IFN-alpha (Ad5-pIFN-alpha) were protected when challenged 1 day later. In this study, we found that type II pIFN (pIFN-gamma) also has antiviral activity against FMDV in cell culture and that, in combination with pIFN-alpha, it has a synergistic antiviral effect. We also observed that while each IFN alone induced a number of IFN-stimulated genes (ISGs), the combination resulted in a synergistic induction of some ISGs. To extend these studies to susceptible animals, we inoculated groups of swine with a control Ad5, 10(8) PFU of Ad5-pIFN-alpha, low- or high-dose Ad5-pIFN-gamma, or a combination of Ad5-pIFN-alpha and low- or high-dose Ad5-pIFN-gamma and challenged all groups with FMDV 1 day later. The control group and the groups inoculated with either Ad5-pIFN-alpha or a low dose of Ad5-pIFN-gamma developed clinical disease and viremia. However, the group that received the combination of both Ad5-IFNs with the low dose of Ad5-pIFN-gamma was completely protected from challenge and had no viremia. Similarly the groups inoculated with the combination of Ad5s with the higher dose of Ad5-pIFN-gamma or with only high-dose Ad5-pIFN-gamma were protected. The protected animals did not develop antibodies against viral nonstructural (NS) proteins, while all infected animals were NS protein seropositive. No antiviral activity or significant levels of IFNs were detected in the protected groups, but there was an induction of some ISGs. The results indicate that the combination of type I and II IFNs act synergistically to inhibit FMDV replication in vitro and in vivo.


Assuntos
Antivirais/imunologia , Vírus da Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Interferon-alfa/imunologia , Interferon gama/imunologia , Replicação Viral/imunologia , Adenoviridae , Animais , Anticorpos Antivirais/imunologia , Linhagem Celular , Cricetinae , Febre Aftosa/imunologia , Regulação da Expressão Gênica/imunologia , Terapia Genética , Humanos , Interferon-alfa/agonistas , Interferon-alfa/genética , Interferon gama/agonistas , Interferon gama/genética , Ovinos , Suínos , Proteínas não Estruturais Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...