Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 123(42): 9234-9239, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31577429

RESUMO

Magnetic focusing of a molecular beam formed from a rotationally cooled supersonic jet of H2O seeded in argon is shown to yield water vapor highly enriched in the ortho-H2O nuclear spin isomer (NSI). Rotationally resolved resonance-enhanced multiphoton ionization time-of-flight mass spectrometry demonstrates that this methodology enables the preparation of a beam of water molecules enriched to >98% in the ortho-H2O NSI, that is, having an ortho-to-para ratio in excess of 50:1. The flux and quantum-state purity achieved through the methodology described herein could enable heterogeneous chemistry applications including the preparation of nuclear spin-polarized water adlayers, making nuclear magnetic resonance investigations amenable to surface science studies, as well as laboratory astrophysics investigations of NSI interconversion mechanisms and rates in ice and at its surface.

2.
J Phys Chem A ; 121(8): 1571-1576, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28157310

RESUMO

The mechanism for interconversion between the nuclear spin isomers (NSI) of H2O remains shrouded in uncertainties. The temperature dependence displayed by NSI interconversion rates for H2O isolated in an argon matrix provides evidence that confinement effects are responsible for the dramatic increase in their kinetics with respect to the gas phase, providing new pathways for o-H2O↔p-H2O conversion in endohedral compounds. This reveals intramolecular aspects of the interconversion mechanism which may improve methodologies for the separation and storage of NSI en route to applications ranging from magnetic resonance spectroscopy and imaging to interpretations of spin temperatures in the interstellar medium.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...