Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 31(4): 103957, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38404539

RESUMO

Colostrum is known for its nutraceutical qualities, probiotic attributes, and health benefits. The aim of this study was to profile colostrum microbiome from bovine in rural sites of a developing country. The focus was on microbiological safety assessments and antimicrobial resistance, taking into account the risks linked with the consumption of raw colostrum. Shotgun sequencing was employed to analyze microbiome in raw buffalo and cow colostrum. Alpha and beta diversity analyses revealed increased inter and intra-variability within colostrum samples' microbiome from both livestock species. The colostrum microbiome was mainly comprised of bacteria, with over 90% abundance, whereas fungi and viruses were found in minor abundance. Known probiotic species, such as Leuconostoc mesenteroides, Lactococcus lactis, Streptococcus thermophilus, and Lactobacillus paracasei, were found in the colostrum samples. A relatively higher number of pathogenic and opportunistic pathogenic bacteria were identified in colostrum from both animals, including clinically significant bacteria like Clostridium botulinum, Pseudomonas aeruginosa, Escherichia coli, and Listeria monocytogenes. Binning retrieved 11 high-quality metagenome-assembled genomes (MAGs), with three MAGs potentially representing novel species from the genera Psychrobacter and Pantoea. Notably, 175 antimicrobial resistance genes (ARGs) and variants were detected, with 55 of them common to both buffalo and cow colostrum metagenomes. These ARGs confer resistance against aminoglycoside, fluoroquinolone, tetracycline, sulfonamide, and peptide antibiotics. In conclusion, this study describes a thorough overview of microbial communities in buffalo and cow colostrum samples. It emphasizes the importance of hygienic processing and pasteurization in minimizing the potential transmission of harmful microorganisms linked to the consumption of colostrum.

2.
Food Waterborne Parasitol ; 32: e00201, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719029

RESUMO

The current study assessed the anti-parasitic impact of probiotics on Toxoplasma gondii infection either solely or challenged with diabetes in Swiss albino mice. The study design encompassed group-A (diabetic), group-B (non-diabetic), and healthy controls (C). Each group was divided into infected-untreated (subgroup-1); infected and spiramycin-treated (subgroup-2); infected and probiotic-treated (subgroup-3); infected and spiramycin+ probiotic-treated (subgroup-4). Diabetic-untreated animals exhibited acute toxoplasmosis and higher cerebral parasite load. Overall, various treatments reduced intestinal pathology, improved body weight, and decreased mortalities; nevertheless, probiotic + spiramycin exhibited significant differences. On day 7 post-infection both PD-1 and IL-17A demonstrated higher scores in the intestine of diabetic-untreated mice compared with non-diabetics and healthy control; whereas, claudin-1 revealed worsening expression. Likewise, on day 104 post-infection cerebral PD-1 and IL-17A showed increased expressions in diabetic animals. Overall, treatment modalities revealed lower scores of PD-1 and IL-17A in non-diabetic subgroups compared with diabetics. Intestinal and cerebral expressions of IL-17A and PD-1 demonstrated positive correlations with cerebral parasite load. In conclusion, toxoplasmosis when challenged with diabetes showed massive pathological features and higher parasite load in the cerebral tissues. Probiotics are a promising adjunct to spiramycin by ameliorating IL-17A and PD-1 in the intestinal and cerebral tissues, improving the intestinal expression of claudin-1, and efficiently reducing the cerebral parasite load.

3.
Foods ; 12(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37761051

RESUMO

This study uncovered microbial communities and evaluated the microbiological safety of traditional fermented foods consumed in the Arab region. Samples of dairy and non-dairy fermented foods-mish, jibneh, zabadi, and pickles-were collected from local markets in Saudi Arabia. Using the MiSeq system, samples were sequenced using 16S amplicons and shotgun metagenomics. Alpha and beta diversity indicated inter- and intra-variation in the studied fermented foods' bacterial communities. In the case of mish, the replicates were clustered. Twenty-one genera were found to be significantly different (FDR < 0.05) in abundance in pairwise comparison of fermented foods. Five high-quality, metagenome-assembled genomes (MAGs) of Lactococcus lactis, Lactobacillus helveticus, Pseudoalteromonas nigrifaciens, Streptococcus thermophiles, and Lactobacillus acetotolerans were retrieved from the shotgun sequencing representing the dominant taxa in the studied fermented foods. Additionally, 33 genes that cause antimicrobial resistance (ARGs) against ten different antibiotic classes were detected. Metabolic pathways were abundant in the studied metagenomes, such as amino acid metabolism, carbohydrate metabolism, cofactors, and vitamin biosynthesis. Metagenomic evaluation of Arabian fermented foods, including the identification of probiotics, pathogenic bacteria, and ARGs, illustrates the importance of microbiological analysis in evaluating their health effects.

4.
Mol Divers ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578620

RESUMO

Tuberculosis (TB) is a global burden to humanity due to its adverse effects on health and society since time is not clearly defined. The existence of drug-resistant strains and the potential threat posed by latent tuberculosis act as strong impetuses for developing novel anti-tuberculosis drugs. In this study, various flavonoids were tested against the Mycobacterium tuberculosis (Mtb) Isocitrate Lyase (ICL), which has been identified as an authorised therapeutic target for treating Mtb infection. Using in silico drug discovery approach, a library of 241 flavonoid compounds was virtually screened against the binding pocket of the crystalline ligand, the VGX inhibitor, in the Mtb ICL protein. As a result, the top four flavonoids were selected based on binding score and were further considered for redocking and intermolecular contact profiling analysis. The global and local fluctuations in the protein and ligand structure were analysed using their root mean square deviation (RMSD) and root mean square fluctuation (RMSF) values obtained from the GROMACS generated 100 ns molecular dynamics (MD) simulation trajectories. The end-state binding free energy was also calculated using the MMPBSA approach for all the respective docked complexes. All four selected compounds exhibited considerable stability and affinity compared to control ligands, i.e. VGX inhibitor; however, Vaccarin showed the highest stability and affinity against the Mtb ICL protein active site, followed by the Genistin, Glabridin, and Corylin. Therefore, this study recommends selected flavonoids for in vitro and in vivo experimental studies to check their potency and efficacy against Mtb.

5.
Medicina (Kaunas) ; 59(2)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36837503

RESUMO

Background and Objectives: Periodontitis is a chronic multifactorial inflammatory infectious disease marked by continuous degradation of teeth and surrounding parts. One of the most important periodontal pathogens is P. intermedia, and with its interpain A proteinase, it leads to an increase in lethal infection. Materials and Methods: The current study was designed to create a multi-epitope vaccine using an immunoinformatics method that targets the interpain A of P. intermedia. For the development of vaccines, P. intermedia peptides InpA were found appropriate. To create a multi-epitope vaccination design, interpain A, B, and T-cell epitopes were found and assessed depending on the essential variables. The vaccine construct was evaluated based on its stability, antigenicity, and allergenicity. Results: The vaccine construct reached a more significant population and was able to bind to both the binding epitopes of major histocompatibility complex (MHC)-I and MHC-II. Through the C3 receptor complex route, P. intermedia InpA promotes an immunological subunit. Utilizing InpA-C3 and vaccination epitopes as the receptor and ligand, the molecular docking and dynamics were performed using the ClusPro 2.0 server. Conclusion: The developed vaccine had shown good antigenicity, solubility, and stability. Molecular docking indicated the vaccine's 3D structure interacts strongly with the complement C3. The current study describes the design for vaccine, and steady interaction with the C3 immunological receptor to induce a good memory and an adaptive immune response against Interpain A of P. intermedia.


Assuntos
Vacinas , Humanos , Simulação de Acoplamento Molecular , Prevotella intermedia , Epitopos de Linfócito T
6.
Medicina (Kaunas) ; 59(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36837545

RESUMO

Background and Objectives: The BaeR protein is involved in the adaptation system of A. baumannii and is associated with virulence factors responsible for systemic infections in hospitalized patients. This study was conducted to characterize putative epitope peptides for the design of vaccines against BaeR protein, using an immune-informatic approach. Materials and Methods: FASTA sequences of BaeR from five different strains of A. baumannii were retrieved from the UNIPROT database and evaluated for their antigenicity, allergenicity and vaccine properties using BepiPred, Vaxijen, AlgPred, AntigenPro and SolPro. Their physio-chemical properties were assessed using the Expasy Protparam server. Immuno-dominant B-cell and T-cell epitope peptides were predicted using the IEDB database and MHC cluster server with a final assessment of their interactions with TLR-2. Results: A final selection of two peptide sequences (36aa and 22aa) was made from the 38 antigenic peptides. E1 was considered a soluble, non-allergenic antigen, and possessed negative GRAVY values, substantiating the hydrophilic nature of the proteins. Further analysis on the T-cell epitopes, class I immunogenicity and HLA allele frequencies yielded T-cell immuno-dominant peptides. The protein-peptide interactions of the TLR-2 receptor showed good similarity scores in terms of the high number of hydrogen bonds compared to other protein-peptide interactions. Conclusions: The two epitopes predicted from BaeR in the present investigation are promising vaccine candidates for targeting the TCS of A. baumannii in systemic and nosocomial infections. This study also demonstrates an alternative strategy to tackling and mitigating MDR strains of A. baumannii and provides a useful reference for the design and construction of novel vaccine candidates against this bacteria.


Assuntos
Acinetobacter baumannii , Humanos , Receptor 2 Toll-Like , Peptídeos/química , Epitopos de Linfócito T , Sequência de Aminoácidos
7.
Global Health ; 19(1): 9, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747262

RESUMO

BACKGROUND: ASEAN (Association of Southeast Asian Nations) is composed of ten Southeast Asian countries bound by socio-cultural ties that promote regional peace and stability. South Asia, located in the southern subregion of Asia, includes nine countries sharing similarities in geographical and ethno-cultural factors. Chikungunya is one of the most significant problems in Southeast and South Asian countries. Much of the current chikungunya epidemic in Southeast Asia is caused by the emergence of a virus strain that originated in Africa and spread to Southeast Asia. Meanwhile, in South Asia, three confirmed lineages are in circulation. Given the positive correlation between research activity and the improvement of the clinical framework of biomedical research, this article aimed to examine the growth of chikungunya virus-related research in ASEAN and South Asian countries. METHODS: The Scopus database was used for this bibliometric analysis. The retrieved publications were subjected to a number of analyses, including those for the most prolific countries, journals, authors, institutions, and articles. Co-occurrence mapping of terms and keywords was used to determine the current state, emerging topics, and future prospects of chikungunya virus-related research. Bibliometrix and VOSviewer were used to analyze the data and visualize the collaboration network mapping. RESULTS: The Scopus search engine identified 1280 chikungunya-related documents published by ASEAN and South Asian countries between 1967 and 2022. According to our findings, India was the most productive country in South Asia, and Thailand was the most productive country in Southeast Asia. In the early stages of the study, researchers investigated the vectors and outbreaks of the chikungunya virus. In recent years, the development of antivirus agents has emerged as a prominent topic. CONCLUSIONS: Our study is the first to present the growth of chikungunya virus-related research in ASEAN and South Asian countries from 1967 to 2022. In this study, the evaluation of the comprehensive profile of research on chikungunya can serve as a guide for future studies. In addition, a bibliometric analysis may serve as a resource for healthcare policymakers.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Humanos , Febre de Chikungunya/epidemiologia , Sudeste Asiático/epidemiologia , Tailândia , Bibliometria , Índia
8.
Bioorg Chem ; 130: 106255, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403336

RESUMO

COVID-19 and associated substantial inflammations continue to threaten humankind triggering death worldwide. So, the development of new effective antiviral and anti-inflammatory medications is a major scientific goal. Pyranopyrazoles have occupied a crucial position in medicinal chemistry because of their biological importance. Here, we report the design and synthesis of a series of sixteen pyranopyrazole derivatives substituted with two aryl groups at N-1 and C-4. The designed compounds are suggested to show dual activity to combat the emerging Coronaviruses and associated substantial inflammations. All compounds were evaluated for their in vitro antiviral activity and cytotoxicity against SARS-CoV infected Vero cells. As well, the in vitro assay of all derivatives against the SARS-CoV Mpro target was performed. Results revealed the potential of three pyranopyrazoles (22, 27, and 31) to potently inhibit the viral main protease with IC50 values of 2.01, 1.83, and 4.60 µM respectively compared with 12.85 and 82.17 µM for GC-376 and lopinavir. Additionally, in vivo anti-inflammatory testing for the most active compound 27 proved its ability to reduce levels of two cytokines (TNF-α and IL-6). Molecular docking and dynamics simulation revealed consistent results with the in vitro enzymatic assay and indicated the stability of the putative complex of 27 with SARS-CoV-2 Mpro. The assessment of metabolic stability and physicochemical properties of 27 have also been conducted. This investigation identified a set of metabolically stable pyranopyrazoles as effective anti-SARS-CoV-2 Mpro and suppressors of host cell cytokine release. We believe that the new compounds deserve further chemical optimization and evaluation for COVID-19 treatment.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Chlorocebus aethiops , Animais , Humanos , Antivirais/farmacologia , Antivirais/química , SARS-CoV-2 , Células Vero , Simulação de Acoplamento Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação
9.
Biomol Biomed ; 23(1): 37-52, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36124445

RESUMO

The SARS-CoV-2 infection causes COVID-19, which has affected approximately six hundred million people globally as of August 2022. Organs and cells harboring angiotensin-converting enzyme 2 (ACE2) surface receptors are the primary targets of the virus. However, once it enters the body through the respiratory system, the virus can spread hematogenously to infect other body organs. Therefore, COVID-19 affects many organs, causing severe and long-term complications, even after the disease has ended, thus worsening the quality of life. Although it is known that the respiratory system is most affected by the SARS-CoV-2 infection, many organs/systems are affected in the short and long term. Since the COVID-19 disease simultaneously affects many organs, redesigning diagnostic and therapy policies to fit the damaged organs is strongly recommended. Even though the pathophysiology of many problems the infection causes is unknown, the frequency of COVID-19 cases rises with age and the existence of preexisting symptoms. This study aims to update our knowledge of SARS-CoV-2 infection and multi-organ dysfunction interaction based on clinical and theoretical evidence. For this purpose, the study comprehensively elucidates the most recent studies on the effects of SARS-CoV-2 infection on multiple organs and systems, including respiratory, cardiovascular, gastrointestinal, renal, nervous, endocrine, reproductive, immune, and parts of the integumentary system. Understanding the range of atypical COVID-19 symptoms could improve disease surveillance, limit transmission, and avoid additional multi-organ-system problems.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Peptidil Dipeptidase A/fisiologia , Qualidade de Vida
10.
Pharmaceuticals (Basel) ; 15(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422556

RESUMO

Antimicrobial resistance (AMR) is a leading cause of treatment failure for many infectious diseases worldwide. Improper overdosing and the misuse of antibiotics contributes significantly to the emergence of drug-resistant bacteria. The co-contamination of heavy metals and antibiotic compounds existing in the environment might also be involved in the spread of AMR. The current study was designed to test the efficacy of heavy metals (arsenic) induced AMR patterns in clinically isolated extended-spectrum ß-lactamase (ESBL) producing bacteria. A total of 300 clinically isolated ESBL-producing bacteria were collected from a tertiary care hospital in Lahore, Pakistan, with the demographic characteristics of patients. After the collection of bacterial isolates, these were reinoculated on agar media for reidentification purposes. Direct antimicrobial sensitivity testing (AST) for bacterial isolates by disk diffusion methods was used to determine the AST patterns with and without heavy metal. The heavy metal was concentrated in dilutions of 1.25 g/mL. The collected bacterial isolates were isolated from wounds (n = 63, 21%), urine (n = 112, 37.3%), blood (n = 43, 14.3%), pus (n = 49, 16.3%), and aspirate (n = 33, 11%) samples. From the total 300 bacterial isolates, n = 172 were Escherichia coli (57.3%), 57 were Klebsiella spp. (19%), 32 were Pseudomonas aeruginosa (10.6%), 21 were Proteus mirabilis (7%) and 18 were Enterobacter spp. (6%). Most of the antibiotic drugs were found resistant to tested bacteria. Colistin and Polymyxin-B showed the highest sensitivity against all tested bacteria, but when tested with heavy metals, these antibiotics were also found to be significantly resistant. We found that heavy metals induced the resistance capability in bacterial isolates, which leads to higher AMR patterns as compared to without heavy metal tested isolates. The results of the current study explored the heavy metal as an inducer of AMR and may contribute to the formation and spread of AMR in settings that are contaminated with heavy metals.

11.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428686

RESUMO

As medical science and technology progress towards the era of "big data", a multi-dimensional dataset pertaining to medical diagnosis and treatment is becoming accessible for mathematical modelling. However, these datasets are frequently inconsistent, noisy, and often characterized by a significant degree of redundancy. Thus, extensive data processing is widely advised to clean the dataset before feeding it into the mathematical model. In this context, Artificial intelligence (AI) techniques, including machine learning (ML) and deep learning (DL) algorithms based on artificial neural networks (ANNs) and their types, are being used to produce a precise and cross-sectional illustration of clinical data. For prostate cancer patients, datasets derived from the prostate-specific antigen (PSA), MRI-guided biopsies, genetic biomarkers, and the Gleason grading are primarily used for diagnosis, risk stratification, and patient monitoring. However, recording diagnoses and further stratifying risks based on such diagnostic data frequently involves much subjectivity. Thus, implementing an AI algorithm on a PC's diagnostic data can reduce the subjectivity of the process and assist in decision making. In addition, AI is used to cut down the processing time and help with early detection, which provides a superior outcome in critical cases of prostate cancer. Furthermore, this also facilitates offering the service at a lower cost by reducing the amount of human labor. Herein, the prime objective of this review is to provide a deep analysis encompassing the existing AI algorithms that are being deployed in the field of prostate cancer (PC) for diagnosis and treatment. Based on the available literature, AI-powered technology has the potential for extensive growth and penetration in PC diagnosis and treatment to ease and expedite the existing medical process.

12.
Medicina (Kaunas) ; 58(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36295517

RESUMO

Background and Objectives: Citrobacter freundii (C. freundii) is an emerging and opportunistic Gram-negative bacteria of the human gastrointestinal tract associated with nosocomial and severe respiratory tract infections. It has also been associated with pneumonia, bloodstream, and urinary tract infections. Intrinsic and adaptive virulence characteristics of C. freundii have become a significant source of diarrheal infections and food poisoning among immune-compromised patients and newborns. Impulsive usage of antibiotics and these adaptive virulence characteristics has modulated the C. freundii into multidrug-resistant (MDR) bacteria. Conventional approaches are futile against MDR C. freundii. Materials and Methods: The current study exploits the modern computational-based vaccine design approach to treat infections related to MDR C. freundii. A whole proteome of C. freundii (strain: CWH001) was retrieved to screen pathogenic and nonhomologous proteins. Six proteins were shortlisted for the selection of putative epitopes for vaccine construct. Highly antigenic, nonallergen, and nontoxic eleven B-cell, HTL, and TCL epitopes were selected for mRNA- and peptide-based multi-epitope vaccine construct. Secondary and tertiary structures of the multi-epitope vaccine (MEVC) were designed, refined, and validated. Results: Evaluation of population coverage of MHC-I and MHC-II alleles were 72% and 90%, respectively. Docking MEVC with TLR-3 receptor with the binding affinity of 21.46 (kcal/mol) occurred through the mmGBSA process. Further validations include codon optimization with an enhanced CAI value of 0.95 and GC content of about 51%. Immune stimulation and molecular dynamic simulation ensure the antibody production upon antigen interaction with the host and stability of the MEVC construct, respectively. Conclusions: These interpretations propose a new strategy to combat MDR C. freundii. Further, in vivo and in vitro trials of this vaccine will be valuable in combating MDR pathogens.


Assuntos
Citrobacter freundii , Proteômica , Recém-Nascido , Humanos , Proteoma , RNA Mensageiro , Receptor 3 Toll-Like , Vacinas de Subunidades Antigênicas/química , Epitopos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos
13.
Microorganisms ; 10(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296253

RESUMO

The epidemiological and clinical aspects of coronavirus disease-2019 (COVID-19) have been subjected to several investigations, but little is known about symptomatic patients with negative SARS-CoV-2 PCR results. The current study investigated patients who presented to the hospital with respiratory symptoms (but negative SARS-CoV-2 RT-PCR results) to determine the prevalence of bacterial pathogens among these patients. A total of 1246 different samples were collected and 453 species of bacterial pathogens were identified by culture. Antibiotic susceptibility testing was performed via the Kirby Bauer disc diffusion test. Patients showed symptoms, such as fever (100%), cough (83%), tiredness (77%), loss of taste and smell (23%), rigors (93%), sweating (62%), and nausea (81%), but all tested negative for COVID-19 by PCR tests. Further examinations revealed additional and severe symptoms, such as sore throats (27%), body aches and pain (83%), diarrhea (11%), skin rashes (5%), eye irritation (21%), vomiting (42%), difficulty breathing (32%), and chest pain (67%). The sum of n = 1246 included the following: males, 289 were between 5 and 14 years, 183 (15-24 years), 157 (25-34 years), 113 (35-49 years), and 43 were 50+ years. Females: 138 were between 5 and 14 years, 93 (15-24 years), 72 (25-34 years), 89 (35-49 years), and 68 were 50+ years. The Gram-positive organisms isolated were Staphylococcus aureus (n = 111, 80.43%, MRSA 16.6%), E. faecalis (n = 20, 14.49%, VRE: 9.4%), and Streptococcus agalactiae (n = 7, 5.07%), while, Gram-negative organisms, such as E. coli (n = 135, 42.85%, CRE: 3.49%), K. pneumoniae (n = 93, 29.52%, CRE: 1.58%), P. aeruginosa (n = 43, 13.65%), C. freundii (n = 21, 6.66%), Serratia spp. (n = 8, 2.53%), and Proteus spp. (n = 15, 4.76%) were identified.

14.
Vaccines (Basel) ; 10(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36298599

RESUMO

Dengue fever (DF) continues to be one of the tropical and subtropical health concerns. Its prevalence tends to increase in some places in these regions. This disease is caused by the dengue virus (DENV), which is transmitted through the mosquitoes Aedes aegypti and A. albopictus. The treatment of DF to date is only supportive and there is no definitive vaccine to prevent this disease. The non-structural DENV protein, RNA-dependent RNA Polymerase (RdRp), is involved in viral replication. The RdRp-derived peptides can be used in the construction of a universal dengue vaccine. These peptides can be utilized as epitopes to induce immunity. This study was an in silico evaluation of the affinity of the potential epitope for the universal dengue vaccine to dendritic cells and the bonds between the epitope and the dendritic cell receptor. The peptide sequence MGKREKKLGEFGKAKG generated from dengue virus subtype 2 (DENV-2) RdRp was antigenic, did not produce allergies, was non-toxic, and had no homology with the human genome. The potential epitope-based vaccine MGKREKKLGEFGKAKG binds stably to dendritic cell receptors with a binding free energy of -474,4 kcal/mol. This epitope is anticipated to induce an immunological response and has the potential to serve as a universal dengue virus vaccine candidate.

15.
Microorganisms ; 10(8)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36014038

RESUMO

Enterobacter cloacae is mainly responsible for sepsis, urethritis, and respiratory tract infections. These bacteria may affect the transcription of the host and particularly their immune system by producing changes in their epigenetics. In the present study, four proteins of Enterobacter cloacae were used to predict the epitopes for the construction of an mRNA vaccine against Enterobacter cloacae infections. In order to generate cellular and humoral responses, various immunoinformatic-based approaches were used for developing the vaccine. The molecular docking analysis was performed for predicting the interaction among the chosen epitopes and corresponding MHC alleles. The vaccine was developed by combining epitopes (thirty-three total), which include the adjuvant Toll-like receptor-4 (TLR4). The constructed vaccine was analyzed and predicted to cover 99.2% of the global population. Additionally, in silico immunological modeling of the vaccination was also carried out. When it enters the cytoplasm of the human (host), the codon is optimized to generate the translated mRNA efficiently. Moreover, the peptide structures were analyzed and docked with TLR-3 and TLR-4. A dynamic simulation predicted the stability of the binding complex. The assumed construct was considered to be a potential candidate for a vaccine against Enterobacter cloacae infections. Hence, the proposed construct is suitable for in vitro analyses to validate its effectiveness.

16.
Molecules ; 27(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36014572

RESUMO

Tuberculosis (TB) caused by the bacterial pathogen Mycobacterium tuberculosis (Mtb) remains a threat to mankind, with over a billion of deaths in the last two centuries. Recent advancements in science have contributed to an understanding of Mtb pathogenesis and developed effective control tools, including effective drugs to control the global pandemic. However, the emergence of drug resistant Mtb strains has seriously affected the TB eradication program around the world. There is, therefore, an urgent need to develop new drugs for TB treatment, which has grown researchers' interest in small molecule-based drug designing and development. The small molecules-based treatments hold significant potential to overcome drug resistance and even provide opportunities for multimodal therapy. In this context, various natural and synthetic flavonoids were reported for the effective treatment of TB. In this review, we have summarized the recent advancement in the understanding of Mtb pathogenesis and the importance of both natural and synthetic flavonoids against Mtb infection studied using in vitro and in silico methods. We have also included flavonoids that are able to inhibit the growth of non-tubercular mycobacterial organisms. Hence, understanding the therapeutic properties of flavonoids can be useful for the future treatment of TB.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Sistemas de Liberação de Medicamentos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
17.
Molecules ; 27(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35807550

RESUMO

The SARS-CoV-2 virus, which caused the COVID-19 infection, was discovered two and a half years ago. It caused a global pandemic, resulting in millions of deaths and substantial damage to the worldwide economy. Currently, only a few vaccines and antiviral drugs are available to combat SARS-CoV-2. However, there has been an increase in virus-related research, including exploring new drugs and their repurposing. Since discovering penicillin, natural products, particularly those derived from microbes, have been viewed as an abundant source of lead compounds for drug discovery. These compounds treat bacterial, fungal, parasitic, and viral infections. This review incorporates evidence from the available research publications on isolated and identified natural products derived from microbes with anti-hepatitis, anti-herpes simplex, anti-HIV, anti-influenza, anti-respiratory syncytial virus, and anti-SARS-CoV-2 properties. About 131 compounds with in vitro antiviral activity and 1 compound with both in vitro and in vivo activity have been isolated from microorganisms, and the mechanism of action for some of these compounds has been described. Recent reports have shown that natural products produced by the microbes, such as aurasperone A, neochinulin A and B, and aspulvinone D, M, and R, have potent in vitro anti-SARS-CoV-2 activity, targeting the main protease (Mpro). In the near and distant future, these molecules could be used to develop antiviral drugs for treating infections and preventing the spread of disease.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Antivirais/farmacologia , Antivirais/uso terapêutico , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Humanos , Pandemias , SARS-CoV-2
18.
Medicina (Kaunas) ; 59(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36676716

RESUMO

The Human Immunodeficiency Virus (HIV) is a highly morphic, retrovirus that rapidly evolves through mutation as well as recombination. Because of the immunocompromised status in HIV patients, there is often a higher chance of acquiring different secondary infections followed by liver cirrhosis, hepatitis B & C, and HIV-associated nephropathy. The current study was conducted to see the prevalence of secondary infections, hematological and biochemical markers for liver and renal associated diseases, and to detect the envelope gene (GP41) in newly diagnosed HIV patients. A total of 37 samples were collected from HIV-positive patients registered in different hospital settings under the National AIDS control program. The collected samples were processed for hepatitis B, hepatitis C, hematological analysis, and biochemical analysis. To identify the envelope gene in newly diagnosed HIV patients, polymerase chain reaction (PCR) was performed using four gene-specific primers. The HIV infections were seen more in male as compared to females. A significant decrease in complete blood count was observed in HIV patients when compared to healthy individuals. There was a significant increase in aspartate aminotransferase (AST), alanine aminotransferase (ALT), urea, and creatinine observed in HIV patients. No significant difference was observed in alkaline phosphatase (ALP), total bilirubin, and albumin levels when compared to healthy control. Anemia was observed in 59.4% of HIV patients. A total of three (8.1%) patients were found to be co-infected with hepatitis B and one (2.7 %) was co-infected with hepatitis C. Out of these 37 tested samples, a total of four showed the successful amplification of the envelope gene. This study provides platform for the health care facilitators to regularly monitor the signs, symptoms and clinical biomarkers of HIV-associated infections to prevent toxicity at an early stage to improve the quality of life (QoL) and minimize the mortality rate in HIV patients. Envelope gene mutating frequently results in drug resistance, and thus future research on polymorphism analysis will reveal points of substitutions to improve drug designing.


Assuntos
Coinfecção , Infecções por HIV , Hepatite B , Hepatite C , Feminino , Humanos , Masculino , Infecções por HIV/complicações , Infecções por HIV/epidemiologia , HIV , Qualidade de Vida , Coinfecção/epidemiologia , Hepatite B/complicações , Hepatite B/epidemiologia , Hepatite C/complicações , Hepacivirus/genética , Prevalência , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...