Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(9): 095001, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36083671

RESUMO

Spherical implosions in inertial confinement fusion are inherently sensitive to perturbations that may arise from experimental constraints and errors. Control and mitigation of low-mode (long wavelength) perturbations is a key milestone to improving implosion performances. We present the first 3D radiation-hydrodynamic simulations of directly driven inertial confinement fusion implosions with an inline package for polarized crossed-beam energy transfer. Simulations match bang times, yields (separately accounting for laser-induced high modes and fuel age), hot spot flow velocities and direction, for which polarized crossed-beam energy transfer contributes to the systematic flow orientation evident in the OMEGA implosion database. Current levels of beam mispointing, imbalance, target offset, and asymmetry from polarized crossed-beam energy transfer degrade yields by more than 40%. The effectiveness of two mitigation strategies for low modes is explored.

2.
Rev Sci Instrum ; 89(10): 10E101, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399728

RESUMO

A new diagnostic has been fielded on OMEGA to diagnose cross-beam energy transfer (CBET) during direct-drive implosions. Unabsorbed light from each OMEGA laser beam is imaged as a distinct "spot" onto a gated optical imager. Each spot is in essence the endpoint of a beamlet of light that originates from different regions of each beam profile and follows a path determined by refraction. The intensity of light in the beamlet varies along its path as a result of absorption and CBET with other beamlets. This diagnostic allows the investigation of the effects of CBET on laser energy from specific locations of the beam profile. The diagnostic records images in two 200-ps time windows and includes a Wollaston prism to split each beamlet into two orthogonal polarizations recorded on separate images, allowing the absolute polarization of each beamlet to be determined. This diagnostic has provided the first evidence of polarization rotation caused by CBET during direct-drive implosions.

3.
Phys Plasmas ; 24(5): 056312, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28611532

RESUMO

For several years, we have been calculating the radiation drive in laser-heated gold hohlraums using flux-limited heat transport with a limiter of 0.15, tabulated values of local thermodynamic equilibrium gold opacity, and an approximate model for not in a local thermodynamic equilibrium (NLTE) gold emissivity (DCA_2010). This model has been successful in predicting the radiation drive in vacuum hohlraums, but for gas-filled hohlraums used to drive capsule implosions, the model consistently predicts too much drive and capsule bang times earlier than measured. In this work, we introduce a new model that brings the calculated bang time into better agreement with the measured bang time. The new model employs (1) a numerical grid that is fully converged in space, energy, and time, (2) a modified approximate NLTE model that includes more physics and is in better agreement with more detailed offline emissivity models, and (3) a reduced flux limiter value of 0.03. We applied this model to gas-filled hohlraum experiments using high density carbon and plastic ablator capsules that had hohlraum He fill gas densities ranging from 0.06 to 1.6 mg/cc and hohlraum diameters of 5.75 or 6.72 mm. The new model predicts bang times to within ±100 ps for most experiments with low to intermediate fill densities (up to 0.85 mg/cc). This model predicts higher temperatures in the plasma than the old model and also predicts that at higher gas fill densities, a significant amount of inner beam laser energy escapes the hohlraum through the opposite laser entrance hole.

4.
Phys Rev Lett ; 118(18): 185003, 2017 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-28524679

RESUMO

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000 km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane. The characteristics of the flow interaction have been inferred from the neutrons and protons generated by deuteron-deuteron interactions and by x-ray emission from the hot, interpenetrating, and interacting plasmas. A localized burst of neutrons and bright x-ray emission near the midpoint of the counterstreaming flows was observed, suggesting strong heating and the initial stages of shock formation. As the separation of the CD-CH foils increases we observe enhanced neutron production compared to particle-in-cell simulations that include Coulomb collisions, but do not include collective collisionless plasma instabilities. The observed plasma heating and enhanced neutron production is consistent with the initial stages of collisionless shock formation, mediated by the Weibel filamentation instability.

5.
Phys Rev E ; 95(3-1): 033208, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415195

RESUMO

We report on the detection of the time-dependent B-field amplitude and topology in a laser-driven solenoid. The B-field inferred from both proton deflectometry and Faraday rotation ramps up linearly in time reaching 210 ± 35 T at the end of a 0.75-ns laser drive with 1 TW at 351 nm. A lumped-element circuit model agrees well with the linear rise and suggests that the blow-off plasma screens the field between the plates leading to an increased plate capacitance that converts the laser-generated hot-electron current into a voltage source that drives current through the solenoid. ALE3D modeling shows that target disassembly and current diffusion may limit the B-field increase for longer laser drive. Scaling of these experimental results to a National Ignition Facility (NIF) hohlraum target size (∼0.2cm^{3}) indicates that it is possible to achieve several tens of Tesla.

7.
Rev Sci Instrum ; 87(11): 11D812, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910586

RESUMO

CR-39 detectors are used routinely in inertial confinement fusion (ICF) experiments as a part of nuclear diagnostics. CR-39 is filtered to stop fast ablator ions which have been accelerated from an ICF implosion due to electric fields caused by laser-plasma interactions. In some experiments, the filtering is insufficient to block these ions and the fusion-product signal tracks are lost in the large background of accelerated ion tracks. A technique for recovering signal in these scenarios has been developed, tested, and implemented successfully. The technique involves removing material from the surface of the CR-39 to a depth beyond the endpoint of the ablator ion tracks. The technique preserves signal magnitude (yield) as well as structure in radiograph images. The technique is effective when signal particle range is at least 10 µm deeper than the necessary bulk material removal.

8.
Phys Rev Lett ; 117(22): 225002, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925754

RESUMO

Analyses of high foot implosions show that performance is limited by the radiation drive environment, i.e., the hohlraum. Reported here are significant improvements in the radiation environment, which result in an enhancement in implosion performance. Using a longer, larger case-to-capsule ratio hohlraum at lower gas fill density improves the symmetry control of a high foot implosion. Moreover, for the first time, these hohlraums produce reduced levels of hot electrons, generated by laser-plasma interactions, which are at levels comparable to near-vacuum hohlraums, and well within specifications. Further, there is a noteworthy increase in laser energy coupling to the hohlraum, and discrepancies with simulated radiation production are markedly reduced. At fixed laser energy, high foot implosions driven with this improved hohlraum have achieved a 1.4×increase in stagnation pressure, with an accompanying relative increase in fusion yield of 50% as compared to a reference experiment with the same laser energy.

9.
Rev Sci Instrum ; 85(11): 11E608, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430354

RESUMO

Laser pre-pulse and early-time laser reflection from the hohlraum wall onto the capsule (termed "glint") can cause capsule imprint and unwanted early-time shocks on indirect drive implosion experiments. In a minor modification to the existing velocity interferometer system for any reflector diagnostic on NIF a fast-response vacuum photodiode was added to detect this light. The measurements show evidence of laser pre-pulse and possible light reflection off the hohlraum wall and onto the capsule.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...