Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(22): 6813-6820, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38781191

RESUMO

Spintronic devices incorporating magnetic skyrmions have attracted significant interest recently. Such devices traditionally focus on controlling magnetic textures in 2D thin films. However, enhanced performance of spintronic properties through the exploitation of higher dimensionalities motivates the investigation of variable-thickness skyrmion devices. We report the demonstration of a skyrmion injection mechanism that utilizes charge currents to drive skyrmions across a thickness step and, consequently, a metastability barrier. Our measurements show that under certain temperature and field conditions skyrmions can be reversibly injected from a thin region of an FeGe lamella, where they exist as an equilibrium state, into a thicker region, where they can only persist as a metastable state. This injection is achieved with a current density of 3 × 108 A m-2, nearly 3 orders of magnitude lower than required to move magnetic domain walls. This highlights the possibility to use such an element as a skyrmion source/drain within future spintronic devices.

2.
Adv Mater ; 35(12): e2208930, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637996

RESUMO

Topological charge plays a significant role in a range of physical systems. In particular, observations of real-space topological objects in magnetic materials have been largely limited to skyrmions - states with a unitary topological charge. Recently, more exotic states with varying topology, such as antiskyrmions, merons, or bimerons and 3D states such as skyrmion strings, chiral bobbers, and hopfions, have been experimentally reported. Along these lines, the realization of states with higher-order topology has the potential to open new avenues of research in topological magnetism and its spintronic applications. Here, real-space imaging of such spin textures, including skyrmion, skyrmionium, skyrmion bag, and skyrmion sack states, observed in exfoliated flakes of the van der Waals magnet Fe3-x GeTe2 (FGT) is reported. These composite skyrmions may emerge from seeded, loop-like states condensed into the stripe domain structure, demonstrating the possibility to realize spin textures with arbitrary integer topological charge within exfoliated flakes of 2D magnets. The general nature of the formation mechanism motivates the search for composite skyrmion states in both well-known and new magnetic materials, which may yet reveal an even richer spectrum of higher-order topological objects.

3.
ACS Nano ; 15(1): 387-395, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33119252

RESUMO

Nanoscopic lamellae of centrosymmetric ferromagnetic alloys have recently been reported to host the biskyrmion spin texture; however, this has been disputed as the misidentication of topologically trivial type-II magnetic bubbles. Here we demonstrate resonant soft X-ray holographic imaging of topological magnetic states in lamellae of the centrosymmetric alloy (Mn1-xNix)0.65Ga0.35 (x = 0.5), showing the presence of magnetic stripes evolving into single core magnetic bubbles. We observe rotation of the stripe phase via the nucleation and destruction of disclination defects. This indicates the system behaves as a conventional uniaxial ferromagnet. By utilizing the holography with extended reference by autocorrelation linear differential operator (HERALDO) method, we show tilted holographic images at 30° incidence confirming the presence of type-II magnetic bubbles in this system. This study demonstrates the utility of X-ray imaging techniques in identifying the topology of localized structures in nanoscale magnetism.

4.
Adv Mater ; 31(16): e1806598, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30844122

RESUMO

The intense research effort investigating magnetic skyrmions and their applications for spintronics has yielded reports of more exotic objects including the biskyrmion, which consists of a bound pair of counter-rotating vortices of magnetization. Biskyrmions have been identified only from transmission electron microscopy images and have not been observed by other techniques, nor seen in simulations carried out under realistic conditions. Here, quantitative Lorentz transmission electron microscopy, X-ray holography, and micromagnetic simulations are combined to search for biskyrmions in MnNiGa, a material in which they have been reported. Only type-I and type-II magnetic bubbles are found and images purported to show biskyrmions can be explained as type-II bubbles viewed at an angle to their axes. It is not the magnetization but the magnetic flux density resulting from this object that forms the counter-rotating vortices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...