Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Forensic Sci ; 63(1): 58-65, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28464314

RESUMO

The differing effects of weathering and microbial degradation are described here in a comprehensive study that involved 50 different ignitable liquids from the Ignitable Liquids Database and Reference Collection. Examples of ignitable liquid residues from each of the main classes established by the American Society of Testing and Materials are presented. Weathering was accomplished via evaporation, whereas microbial degradation was carried out on soil at room temperature for periods of up to 21 days. Major trends included the rapid degradation of long n-alkanes and monosubstituted alkyl benzenes (e.g., toluene, ethylbenzene, and propylbenzene). Surprisingly, some longer branched alkanes (e.g., trimethyloctanes) were also susceptible to microbial attack. Although all ignitable liquids examined suffered at least to some extent from microbial degradation, gasoline, petroleum distillates, and oxygenates were the most susceptible. Isoparaffinic and naphthenic-paraffinic products were the most resistant to microbial degradation.


Assuntos
Biodegradação Ambiental , Petróleo/análise , Microbiologia do Solo , Volatilização , Cromatografia Gasosa-Espectrometria de Massas , Nitrogênio
2.
Forensic Sci Int ; 239: 86-91, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24769222

RESUMO

When a fire is suspected to be intentionally set, fire debris samples can be collected and analyzed for ignitable liquid residues (ILRs). In some cases, samples will contain highly organic substrates such as soil or rotting wood. These substrates will contain a high bacterial load, which can result in systematic and irreversible damage to the ILR due to microbial degradation. This paper explores ways to preserve ILR by sterilizing fire debris samples without interfering with their subsequent analysis. There are many methods reported in the literature for sterilizing soil, such as freezing, irradiation, autoclaving, and various chemical fumigation techniques. However, these methods either do not kill all bacterial species, cannot be easily applied in the field or would interfere with the analysis of the ILRs. For this work, various anti-microbial compounds including triclosan (2,4,4'-trichloro-2'-hydroxydiphenyl ether) were tested for their efficacy at killing bacteria present in the soil. Triclosan was highly effective in qualitative growth studies and was therefore used to measure bacterial growth (or lack thereof) by spectroscopic analysis as well as passive headspace analysis. These experiments showed that triclosan was able to sterilize soil samples in less than 60s, maintain their sterility for at least 77h and preserve gasoline residues on a soil matrix for at least 30 days.


Assuntos
Anti-Infecciosos Locais/farmacologia , Incêndios , Microbiologia do Solo , Triclosan/farmacologia , Ciências Forenses , Cromatografia Gasosa-Espectrometria de Massas , Gasolina , Humanos , Manejo de Espécimes , Esterilização
3.
Anal Bioanal Chem ; 405(5): 1593-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23241819

RESUMO

The primary task of a fire debris chemist is to determine if there is an ignitable liquid present in a fire debris sample and, if so, to classify it according to its boiling point and carbon number range. However, in organic-rich substrates such as soil, the ignitable liquid residue is subject to microbial degradation due to the ease with which bacteria can metabolize the various hydrocarbons present. This is a rapid process which is problematic in many forensic laboratories as fire debris is often stored for extended periods of time due to case backlog. Although microbial degradation has been studied in laboratory samples, it has not been well-studied in "real-world" samples, which have not only been exposed to microbial degradation but have also suffered the effects of weathering due to the intense heat of the fire. In this work, the effects of microbial degradation of gasoline from an incendiary device have been evaluated over time. In addition to visually monitoring chromatographic changes, this work also utilizes multivariate statistical techniques to simplify the complex data set and elucidate trends that might not otherwise be observed. Results indicate a clear difference between glass samples, which suffered the loss of low boiling compounds, and soil, which suffered the loss of the normal alkanes and lesser substituted aromatics. Also, devices deployed on lawn soil and in the winter season appear to show the most extensive degradation of gasoline. Finally, while the ratio of the C(3)-alkylbenzenes is significantly altered in soil samples recovered from large devices, the overall chromatographic profile of gasoline recovered from smaller incendiary devices is significantly lower.


Assuntos
Gasolina/análise , Microbiologia do Solo , Poluentes do Solo/metabolismo , Solo/análise , Biodegradação Ambiental , Incêndios , Estações do Ano , Poluentes do Solo/análise
4.
J Forensic Sci ; 57(1): 64-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22150510

RESUMO

Ignitable liquid residues recovered from a fire scene will often show signs of weathering as a result of exposure to the heat of the fire. In addition, when the substrate is rich in organic matter, both weathering and microbial degradation may be observed. In this study, 20 µL aliquots of fresh gasoline samples were intentionally weathered and also subjected to microbial degradation in potting soil. These samples were then analyzed using a passive adsorption-elution recovery method and gas chromatography/mass spectrometry. Peak areas from compounds of interest were normalized and autoscaled and then subjected to principal components analysis. This analysis showed that while lower boiling compounds are subject to weathering, a different set of compounds are subject to microbial degradation. Of the compounds studied, heptane, octane, toluene, and ethylbenzene were the most vulnerable to both weathering and microbial degradation. In contrast, 1,3,5-trimethylbenzene and 2-ethyltoluene were the most resistant to both phenomena.

5.
J Forensic Sci ; 56(4): 984-7, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21418216

RESUMO

Biodegradation can result in selective removal of many of the compounds required for the identification of an ignitable liquid. In this study, the effects of microbial degradation on tiki torch fuel, lamp oil, and turpentine are reported. Samples of soil spiked with 20 µL of the liquids were stored at room temperature for up to 7 days. The ignitable liquids were then recovered using passive headspace concentration onto charcoal strips followed by solvent elution using pentane. Microbial degradation of tiki torch fuel resulted in the loss of the n-alkanes relative to the branched alkanes. Changes in the profile of the lamp oil were minor due to the highly branched nature of its alkanes. Microbial degradation of turpentine resulted in the selective loss of limonene and o-cymene. Overall, significant degradation by microbial action could result in the inability to identify the presence of an ignitable liquid or misclassify the ignitable liquid found.

6.
Anal Bioanal Chem ; 394(1): 363-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19205675

RESUMO

The identification of ignitable liquid residues in fire debris is a key finding for determining the cause and origin of a suspicious fire. However, the complex mixtures of organic compounds that comprise ignitable liquids are susceptible to microbiological attack following collection of the sample. Biodegradation can result in selective removal of many of the compounds required for identification of an ignitable liquid. Such degradation has been found to occur rapidly in substrates such as soil, rotting wood, or other organic matter. Furthermore, fire debris evidence must often be stored for extended periods at room temperature prior to analysis due to case backlogs and available evidence storage. Hence, extensive damage to ignitable liquid residues by microbes poses a significant threat to subsequent laboratory work. In this work, the effects of microbial degradation of ignitable liquids in soil have been evaluated as a function of time. Key findings include the loss of n-alkanes, particularly C(9)-C(16), which showed the most dramatic decrease in gasoline as well as the petroleum distillates, while branched alkanes remained unchanged. Monosubstituted benzenes also showed the most dramatic loss in gasoline. In the heavy petroleum distillates, n-alkanes with even carbon numbers were degraded more than n-alkanes with odd carbon numbers.


Assuntos
Alcanos/metabolismo , Bactérias/metabolismo , Incêndios , Alcanos/análise , Biodegradação Ambiental , Petróleo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...