Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 1050650, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570892

RESUMO

The citrus industry of Florida faces insurmountable challenges against the destructive diseases citrus tristeza and Huanglongbing (HLB, or citrus greening). Though the tristeza causal agent, citrus tristeza virus (CTV), has been in Florida decades longer than HLB, growers have concentrated most of their efforts on combating the more detrimental HLB. The Asian citrus psyllid (Diaphorina citri; ACP) is the insect vector of the bacterial pathogen Candidatus Liberibacter asiaticus and transmits the incurable HLB to all commercial citrus. During our searches for biological and viral controls against the ACP, we consistently detected sequences of CTV in Florida field populations of ACP. This unexpected finding led us to investigate whether ACPs collected from young shoots could be used as a tool to survey CTV in Florida citrus groves. We first surveyed for the most common CTV strains in Florida (T30, T36, and VT/T68) in citrus trees on mostly sour orange (Citrus aurantium) rootstock, the rootstock susceptible to CTV decline. Out of 968 trees sampled across five years (2018-2022), approximately 8.2% were positive for CTV, with more than half of the CTV-positive trees infected with strain T30. Simultaneously, we looked at CTV strains in ACPs during this time and found that approximately 88% of pooled adult and nymph ACPs also had CTV, with over half the positive samples having the T36 strain. As a result of the much higher CTV incidences in the ACPs, we conducted a second investigation into whether we could more easily detect the same CTV strains in ACP nymphs as in CTV-infected citrus tissue. After individually sampling 43 trees and pooling the nymphs from each tree, we detected CTV at about the same incidence in the citrus tissue and the nymphs, but with much less ACP tissue, time, and resources required for detection compared to citrus tissue. Results from this study illustrate the sustained threat of CTV to Florida citrus and demonstrate the ACP as a potential bioindicator for CTV.

3.
Insects ; 10(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480697

RESUMO

Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identification of differentially expressed genes with CLso infection in the midguts, adults, and nymphs of B. trigonica and their putative involvement in CLso transmission. Several genes related to focal adhesion and cellular invasion were upregulated after CLso infection. Interestingly, genes involved with proper functionality of the endoplasmic reticulum (ER) were upregulated in CLso infected samples. Notably, genes from the endoplasmic reticulum associated degradation (ERAD) and the unfolded protein response (UPR) pathway were overexpressed after CLso infection. Marker genes of the ERAD and UPR pathways were also upregulated in Diaphorina citri when infected with Candidatus Liberibacter asiaticus (CLas). Upregulation of the ERAD and UPR pathways indicate induction of ER stress by CLso/CLas in their psyllid vector. The role of ER in bacteria-host interactions is well-documented; however, the ER role following pathogenesis of CLso/CLas is unknown and requires further functional validation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...