Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Rehabil Sci ; 5: 1345364, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500790

RESUMO

Introduction: Myoelectric pattern recognition systems have shown promising control of upper limb powered prostheses and are now commercially available. These pattern recognition systems typically record from up to 8 muscle sites, whereas other control systems use two-site control. While previous offline studies have shown 8 or fewer sites to be optimal, real-time control was not evaluated. Methods: Six individuals with no limb absence and four individuals with a transradial amputation controlled a virtual upper limb prosthesis using pattern recognition control with 8 and 16 channels of EMG. Additionally, two of the individuals with a transradial amputation performed the Assessment for Capacity of Myoelectric Control (ACMC) with a multi-articulating hand and wrist prosthesis with the same channel count conditions. Results: Users had significant improvements in control when using 16 compared to 8 EMG channels including decreased classification error (p = 0.006), decreased completion time (p = 0.019), and increased path efficiency (p = 0.013) when controlling a virtual prosthesis. ACMC scores increased by more than three times the minimal detectable change from the 8 to the 16-channel condition. Discussion: The results of this study indicate that increasing EMG channel count beyond the clinical standard of 8 channels can benefit myoelectric pattern recognition users.

2.
PLoS One ; 18(1): e0280210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701412

RESUMO

BACKGROUND: Despite the growing availability of multifunctional prosthetic hands, users' control and overall functional abilities with these hands remain limited. The combination of pattern recognition control and targeted muscle reinnervation (TMR) surgery, an innovative technique where amputated nerves are transferred to reinnervate new muscle targets in the residual limb, has been used to improve prosthesis control of individuals with more proximal upper limb amputations (i.e., shoulder disarticulation and transhumeral amputation). OBJECTIVE: The goal of this study was to determine if prosthesis hand grasp control improves following transradial TMR surgery. METHODS: Eight participants were trained to use a multi-articulating hand prosthesis under myoelectric pattern recognition control. All participated in home usage trials pre- and post-TMR surgery. Upper limb outcome measures were collected following each home trial. RESULTS: Three outcome measures (Southampton Hand Assessment Procedure, Jebsen-Taylor Hand Function Test, and Box and Blocks Test) improved 9-12 months post-TMR surgery compared with pre-surgery measures. The Assessment of Capacity for Myoelectric Control and Activities Measure for Upper Limb Amputees outcome measures had no difference pre- and post-surgery. An offline electromyography analysis showed a decrease in grip classification error post-TMR surgery compared to pre-TMR surgery. Additionally, a majority of subjects noted qualitative improvements in their residual limb and phantom limb sensations post-TMR. CONCLUSIONS: The potential for TMR surgery to result in more repeatable muscle contractions, possibly due to the reduction in pain levels and/or changes to phantom limb sensations, may increase functional use of many of the clinically available dexterous prosthetic hands.


Assuntos
Membros Artificiais , Membro Fantasma , Humanos , Músculo Esquelético/inervação , Amputação Cirúrgica , Extremidade Superior , Eletromiografia/métodos
3.
Artigo em Inglês | MEDLINE | ID: mdl-36355739

RESUMO

With the increasing availability of more advanced prostheses individuals with a transradial amputation can now be fit with single to multi-degree of freedom hands. Reliable and accurate control of these multi-grip hands still remains challenging. This is the first multi-user study to investigate at-home control and use of a multi-grip hand prosthesis under pattern recognition and direct control. Individuals with a transradial amputation were fitted with and trained to use an OSSUR i-Limb Ultra Revolution with Coapt COMPLETE CONTROL system. They participated in two 8-week home trials using the hand under myoelectric direct and pattern recognition control in a randomized order. While at home, participants demonstrated broader usage of grips in pattern recognition compared to direct control. After the home trial, they showed significant improvements in the Assessment of Capacity for Myoelectric Control (ACMC) outcome measure while using pattern recognition control compared to direct control; other outcome measures showed no differences between control styles. Additionally, this study provided a unique opportunity to evaluate EMG signals during home use. Offline analysis of calibration data showed that users were 81.5% [7.1] accurate across a range of three to five grips. Although EMG signal noise was identified during some calibrations, overall EMG quality was sufficient to provide users with control performance at or better than direct control.


Assuntos
Membros Artificiais , Reconhecimento Automatizado de Padrão , Humanos , Amputação Cirúrgica , Eletromiografia , Mãos , Desenho de Prótese
4.
J Rehabil Assist Technol Eng ; 8: 20556683211035057, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471545

RESUMO

INTRODUCTION: After stroke, upper limb impairment affects independent performance of activities of daily living. We evaluated the usability, functionality, and efficacy of a myoelectric elbow-wrist-hand orthosis to provide support, limit unsafe motion, and enhance the functional motion of paralyzed or weak upper limbs. METHODS: Individuals with stroke participated in a single-session study to evaluate the device. Ability to activate the device was tested in supported and unsupported shoulder position, as well as the elbow range of motion, ability to maintain elbow position, and ability to lift and hold a range of weights while using the device. RESULTS: No adverse events were reported. 71% of users were able to operate the device in all three active myoelectric activation modes (Biceps, Triceps, Dual) during testing. Users were able to hold a range of wrist weights (0.5-2 lbs) for 10-120 seconds, with the largest percentage of participants able to hold weights with the device in Biceps Mode. CONCLUSIONS: The myoelectric elbow-wrist-hand orthosis improved range of motion during use and was efficacious at remediating upper extremity impairment after stroke. All users could operate the device in at least one mode, and most could lift and hold weights representative of some everyday objects using the device.

5.
J Neuroeng Rehabil ; 17(1): 116, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32843058

RESUMO

BACKGROUND: State-of-the-art bionic hands incorporate hi-tech devices which try to overcome limitations of conventional single grip systems. Unfortunately, their complexity often limits mechanical robustness and intuitive prosthesis control. Recently, the translation of neuroscientific theories (i.e. postural synergies) in software and hardware architecture of artificial devices is opening new approaches for the design and control of upper-limb prostheses. METHODS: Following these emerging principles, previous research on the SoftHand Pro, which embeds one physical synergy, showed promising results in terms of intuitiveness, robustness, and grasping performance. To explore these principles also in hands with augmented capabilities, this paper describes the SoftHand 2 Pro, a second generation of the device with 19 degrees-of-freedom and a second synergistic layer. After a description of the proposed device, the work explores a continuous switching control method based on a myoelectric pattern recognition classifier. RESULTS: The combined system was validated using standardized assessments with able-bodied and, for the first time, amputee subjects. Results show an average improvement of more than 30% of fine grasp capabilities and about 10% of hand function compared with the first generation SoftHand Pro. CONCLUSIONS: Encouraging results suggest how this approach could be a viable way towards the design of more natural, reliable, and intuitive dexterous hands.


Assuntos
Membros Artificiais , Mãos , Desenho de Prótese/métodos , Robótica/instrumentação , Adulto , Amputados , Eletromiografia/métodos , Feminino , Força da Mão , Voluntários Saudáveis , Humanos , Masculino , Software , Adulto Jovem
6.
IEEE Int Conf Rehabil Robot ; 2019: 386-391, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31374660

RESUMO

Although more multi-articulating hand prostheses have become commercially available, replacing a missing hand remains challenging from a control perspective. This study investigated myoelectric direct control and pattern recognition home use of a multi-articulating hand prosthesis for individuals with a transradial amputation. Four participants were fitted with an i-limb Ultra Revolution hand and a Coapt COMPLETE CONTROL system. An occupational therapist provided training for each control style and how to use the various grips. The number of grips available to each individual was determined by clinician and user feedback to optimize both the number of grips available and the reliability of grip selection. Home trial data corresponding to individual usage were recorded. No significant differences were found between direct and pattern recognition control home trials in regards to trial length (p=0.96), days powered on (p=0.21), or total time powered on (p=0.91). There was a higher average number of configured grips for direct control at 4.8 [0.5] compared to 3.8 [0.5] for pattern recognition control, but this difference did not reach significance (p=0.092). Across all hand close movements, users spent a majority of time $(\gt80$%) in one grip when using direct control. For pattern recognition usage was spread across more grips $(\gt45$% time in one grip, 25% time in a 2nd grip, and 20% time in a 3rd grip). Pattern recognition control may provide users with a more intuitive way to select and use the various grips available to them.


Assuntos
Amputados , Membros Artificiais , Eletromiografia , Mãos , Reconhecimento Automatizado de Padrão , Desenho de Prótese , Adulto , Feminino , Força da Mão , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...