Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 8(6): e65639, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23822972

RESUMO

Genomic imprinting results in parent-of-origin-dependent monoallelic gene expression. Early work showed that distal mouse chromosome 2 is imprinted, as maternal and paternal duplications of the region (with corresponding paternal and maternal deficiencies) give rise to different anomalous phenotypes with early postnatal lethalities. Newborns with maternal duplication (MatDp(dist2)) are long, thin and hypoactive whereas those with paternal duplication (PatDp(dist2)) are chunky, oedematous, and hyperactive. Here we focus on PatDp(dist2). Loss of expression of the maternally expressed Gnas transcript at the Gnas cluster has been thought to account for the PatDp(dist2) phenotype. But PatDp(dist2) also have two expressed doses of the paternally expressed Gnasxl transcript. Through the use of targeted mutations, we have generated PatDp(dist2) mice predicted to have 1 or 2 expressed doses of Gnasxl, and 0, 1 or 2 expressed doses of Gnas. We confirm that oedema is due to lack of expression of imprinted Gnas alone. We show that it is the combination of a double dose of Gnasxl, with no dose of imprinted Gnas, that gives rise to the characteristic hyperactive, chunky, oedematous, lethal PatDp(dist2) phenotype, which is also hypoglycaemic. However PatDp(dist2) mice in which the dosage of the Gnasxl and Gnas is balanced (either 2∶2 or 1∶1) are neither dysmorphic nor hyperactive, have normal glucose levels, and are fully viable. But PatDp(dist2) with biallelic expression of both Gnasxl and Gnas show a marked postnatal growth retardation. Our results show that most of the PatDp(dist2) phenotype is due to overexpression of Gnasxl combined with loss of expression of Gnas, and suggest that Gnasxl and Gnas may act antagonistically in a number of tissues and to cause a wide range of phenotypic effects. It can be concluded that monoallelic expression of both Gnasxl and Gnas is a requirement for normal postnatal growth and development.


Assuntos
Cromograninas/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Dosagem de Genes , Impressão Genômica , Família Multigênica , Absorciometria de Fóton , Animais , Animais Recém-Nascidos , Transtornos do Crescimento , Camundongos
2.
Nat Genet ; 38(3): 350-5, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16462745

RESUMO

Genomic imprinting results in allele-specific silencing according to parental origin. Silencing is brought about by imprinting control regions (ICRs) that are differentially marked in gametogenesis. The group of imprinted transcripts in the mouse Gnas cluster (Nesp, Nespas, Gnasxl, Exon 1A and Gnas) provides a model for analyzing the mechanisms of imprint regulation. We previously identified an ICR that specifically regulates the tissue-specific imprinted expression of the Gnas gene. Here we identify a second ICR at the Gnas cluster. We show that a paternally derived targeted deletion of the germline differentially methylated region (DMR) associated with the antisense Nespas transcript unexpectedly affects both the expression of all transcripts in the cluster and methylation of two DMRs. Our results establish that the Nespas DMR is the principal ICR at the Gnas cluster and functions bidirectionally as a switch for modulating expression of the antagonistically acting genes Gnasxl and Gnas. Uniquely, the Nespas DMR acts on the downstream ICR at exon 1A to regulate tissue-specific imprinting of the Gnas gene.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , RNA Antissenso/genética , RNA não Traduzido/genética , Transcrição Gênica , Animais , Cromograninas , Metilação de DNA , Éxons , Feminino , Masculino , Camundongos , Dados de Sequência Molecular , Família Multigênica , Deleção de Sequência
3.
Nat Genet ; 36(8): 894-9, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15273687

RESUMO

Genomic imprinting brings about allele-specific silencing according to parental origin. Silencing is controlled by cis-acting regulatory regions that are differentially marked during gametogenesis and can act over hundreds of kilobases to silence many genes. Two candidate imprinting control regions (ICRs) have been identified at the compact imprinted Gnas cluster on distal mouse chromosome 2, one at exon 1A upstream of Gnas itself and one covering the promoters for Gnasxl and the antisense Nespas (ref. 8). This imprinted cluster is complex, containing biallelic, maternally and paternally expressed transcripts that share exons. Gnas itself is mainly biallelically expressed but is weakly paternally repressed in specific tissues. Here we show that a paternally derived targeted deletion of the germline differentially methylated region at exon 1A abolishes tissue-specific imprinting of Gnas. This rescues the abnormal phenotype of mice with a maternally derived Gnas mutation. Imprinting of alternative transcripts, Nesp, Gnasxl and Nespas (ref. 13), in the cluster is unaffected. The results establish that the differentially methylated region at exon 1A contains an imprinting control element that specifically regulates Gnas and comprises a characterized ICR for a gene that is only weakly imprinted in a minority of tissues. There must be a second ICR regulating the alternative transcripts.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Sequências Reguladoras de Ácido Nucleico , Animais , Cromograninas , Metilação de DNA , Marcação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutação , Especificidade de Órgãos , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...