Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Heart Assoc ; 12(23): e032616, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37930079

RESUMO

BACKGROUND: Cerebral small vessel disease (cSVD) is a major contributing factor to ischemic stroke and dementia. However, the vascular pathologies of cSVD remain inconclusive. The aim of this systematic review and meta-analysis was to characterize the associations between cSVD and cerebrovascular reactivity (CVR), cerebral autoregulation, and arterial stiffness (AS). METHODS AND RESULTS: MEDLINE, Web of Science, and Embase were searched from inception to September 2023 for studies reporting CVR, cerebral autoregulation, or AS in relation to radiological markers of cSVD. Data were extracted in predefined tables, reviewed, and meta-analyses performed using inverse-variance random effects models to determine pooled odds ratios (ORs). A total of 1611 studies were identified; 142 were included in the systematic review, of which 60 had data available for meta-analyses. Systematic review revealed that CVR, cerebral autoregulation, and AS were consistently associated with cSVD (80.4%, 78.6%, and 85.4% of studies, respectively). Meta-analysis in 7 studies (536 participants, 32.9% women) revealed a borderline association between impaired CVR and cSVD (OR, 2.26 [95% CI, 0.99-5.14]; P=0.05). In 37 studies (27 952 participants, 53.0% women) increased AS, per SD, was associated with cSVD (OR, 1.24 [95% CI, 1.15-1.33]; P<0.01). Meta-regression adjusted for comorbidities accounted for one-third of the AS model variance (R2=29.4%, Pmoderators=0.02). Subgroup analysis of AS studies demonstrated an association with white matter hyperintensities (OR, 1.42 [95% CI, 1.18-1.70]; P<0.01). CONCLUSIONS: The collective findings of the present systematic review and meta-analyses suggest an association between cSVD and impaired CVR and elevated AS. However, longitudinal investigations into vascular stiffness and regulatory function as possible risk factors for cSVD remain warranted.


Assuntos
Doenças de Pequenos Vasos Cerebrais , Rigidez Vascular , Humanos , Feminino , Masculino , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/epidemiologia , Doenças de Pequenos Vasos Cerebrais/complicações , Fatores de Risco , Imageamento por Ressonância Magnética/métodos
2.
Ann Med ; 55(2): 2269586, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37883807

RESUMO

OBJECTIVE: Athletes are susceptible to acute respiratory tract infections, including SARS-CoV-2, which can affect cardiovascular function. We aimed to evaluate the impact of COVID-19 infection and quarantine on cardiac function in male and female collegiate athletes. METHODS: We conducted a single-center, prospective, case-control study and performed transthoracic echocardiography in a diverse group of convalescent SARS-CoV-2-positive athletes following a 10-14-day quarantine, matched to non-SARS-CoV-2 athletes. Data collection occurred from August 1, 2020, to May 31, 2021. RESULTS: We evaluated 61 SARS-CoV-2-positive athletes (20 ± 1 years, 39% female) and 61 controls (age 20 ± 2 years, 39% female). Echocardiography in SARS-CoV-2-positive athletes was performed on average 40 ± 38 days after infection diagnosis. All SARS-CoV-2-positive athletes had clinically normal systolic left ventricular function (LVEF > 50%). However, SARS-CoV-2-positive athletes exhibited mildly lower LVEF compared to controls (65 ± 6% vs. 72 ± 8%, respectively, p < 0.001), which remained significant when evaluated separately for female and male athletes. Sub-analysis revealed these differences occurred only when imaging occurred within a mean average of 27 days of infection, with a longer recovery period (≥27 days) resulting in no differences. SARS-CoV-2-positive male athletes exhibited higher left ventricular end-diastolic volume and mitral filling velocities compared to male controls. CONCLUSION: Our study reveals unique sex-specific cardiac changes in collegiate athletes following SARS-CoV-2 infection and quarantine compared to controls. Despite a mild reduction in LVEF, which was only observed in the first weeks following infection, no clinically significant cardiac abnormalities were observed. Further research is required to understand if the changes in LVEF are directly attributed to the infection or indirectly through exercise restrictions resulting from quarantine.


Assuntos
COVID-19 , Humanos , Masculino , Feminino , Adolescente , Adulto Jovem , Adulto , COVID-19/diagnóstico , SARS-CoV-2 , Estudos de Casos e Controles , Quarentena , Atletas
3.
Int J Cardiol Heart Vasc ; 49: 101300, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38173789

RESUMO

Background: 5-fluorouracil (5-FU) is the second most common cancer chemotherapy associated with short- and long-term cardiotoxicity. Although the mechanisms mediating these toxicities are not well understood, patients often present with symptoms suggestive of microvascular dysfunction. We tested the hypotheses that patients undergoing cancer treatment with 5-FU based chemotherapy regimens would present with impaired microvascular reactivity and that these findings would be substantiated by decrements in endothelial nitric oxide synthase (eNOS) gene expression in 5-FU treated human coronary artery endothelial cells (HCAEC). Methods: We first performed a cross-sectional analysis of 30 patients undergoing 5-FU based chemotherapy treatment for cancer (5-FU) and 32 controls (CON) matched for age, sex, body mass index, and prior health history (excluding cancer). Cutaneous microvascular reactivity was evaluated by laser Doppler flowmetry in response to endothelium-dependent (local skin heating; acetylcholine iontophoresis, ACh) and -independent (sodium nitroprusside iontophoresis, SNP) stimuli. In vitro experiments in HCAEC were completed to assess the effects of 5-FU on eNOS gene expression. Results: 5-FU presented with diminished microvascular reactivity following eNOS-dependent local heating compared to CON (P = 0.001). Iontophoresis of the eNOS inhibitor L-NAME failed to alter the heating response in 5-FU (P = 0.95), despite significant reductions in CON (P = 0.03). These findings were corroborated by lower eNOS gene expression in 5-FU treated HCAEC (P < 0.01) compared to control. Peak vasodilation to ACh (P = 0.58) nor SNP (P = 0.39) were different between groups. Conclusions: The present findings suggest diminished microvascular function along the eNOS-NO vasodilatory pathway in patients with cancer undergoing treatment with 5-FU-based chemotherapy regimens and thus, may provide insight into the underlying mechanisms of 5-FU cardiotoxicity.

4.
Support Care Cancer ; 31(1): 63, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534177

RESUMO

In non-cancer populations, inorganic dietary nitrate (NO3-) supplementation is associated with enhanced cardiorespiratory function but remains untested in patients with a history of cancer. Therefore, this pilot study sought to determine if oral NO3- supplementation, as a supportive care strategy, increases left ventricular (LV) function and exercise performance in survivors of cancer treated with anticancer therapy while simultaneously evaluating the feasibility of the methods and procedures required for future large-scale randomized trials. Two cohorts of patients with a history of cancer treated with anticancer chemotherapy were recruited. Patients in cohort 1 (n = 7) completed a randomized, double-blind, crossover study with 7 days of NO3- or placebo (PL) supplementation, with echocardiography. Similarly, patients in cohort 2 (n = 6) received a single, acute dose of NO3- supplementation or PL. Pulmonary oxygen uptake (VO2), arterial blood pressure, and stroke volume were assessed during exercise. In cohort 1, NO3- improved LV strain rate in early filling (mean difference (MD) [95% CI]: - 0.3 1/s [- 0.6 to 0.06]; P = 0.04) and early mitral septal wall annular velocity (MD [95% CI]: 0.1 m/s [- 0.01 to - 0.001]; P = 0.02) compared to placebo. In cohort 2, NO3- decreased the O2 cost of low-intensity steady-state exercise (MD [95% CI]: - 0.5 ml/kg/min [- 0.9 to - 0.09]; P = 0.01). Resting and steady-state arterial blood pressure and stroke volume were not different between conditions. No differences between conditions for peak VO2 (MD [95% CI]: - 0.7 ml/kg/min [- 3.0 to 1.6]; P = 0.23) were observed. The findings from this pilot study warrant further investigation in larger clinical trials targeting the use of long-term inorganic dietary NO3- supplementation as a possible integrative supportive care strategy in patients following anticancer therapy.


Assuntos
Sobreviventes de Câncer , Neoplasias , Humanos , Nitratos , Projetos Piloto , Estudos Cross-Over , Suplementos Nutricionais , Método Duplo-Cego , Consumo de Oxigênio/fisiologia
5.
Case Rep Cardiol ; 2022: 3259978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433053

RESUMO

Introduction: Since the COVID-19 pandemic there is concern for subclinical cardiac pathology in the absence of clinical symptoms in collegiate athletes, we present 4 cases of abnormal left ventricular global longitudinal strain (LVGLS), a "red-flag" for potential COVID-19 myocardial disease, following diagnosis with diverse abnormalities reported via multimodality imaging weeks into recovery. Methods: Cardiac imaging studies consisting of transthoracic echocardiography (TTE) and cardiovascular magnetic resonance imaging (CMR) were performed 10 days post-COVID-19 diagnosis and several weeks into recovery. Results: Initial TTE revealed abnormal left ventricular global longitudinal strain (LVGLS), an identified "red-flag" for potential COVID-19 myocardial disease. Further CMR imaging revealed potential recent/prior myocarditis in 1 athlete. Follow-up TTE several weeks later revealed a return to normal LVGLS. Conversely, 2 cases with normal CMR imaging had a LVGLS that remained abnormal >30 days into recovery. Conclusions: These individual cases highlight the substantial differences in echocardiographic and CMR abnormalities between athletes with confirmed COVID-19.

6.
Respir Physiol Neurobiol ; 294: 103765, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34352384

RESUMO

INTRODUCTION: Concerns have been raised that COVID-19 face coverings compromise lung function and pulmonary gas exchange to the extent that they produce arterial hypoxemia and hypercapnia during high intensity exercise resulting in exercise intolerance in recreational exercisers. This study therefore aimed to investigate the effects of a surgical, flannel or vertical-fold N95 masks on cardiorespiratory responses to incremental exercise. METHODS: This investigation studied 11 adult males and females at rest and while performing progressive cycle exercise to exhaustion. We tested the hypotheses that wearing a surgical (S), flannel (F) or horizontal-fold N95 mask compared to no mask (control) would not promote arterial deoxygenation or exercise intolerance nor alter primary cardiovascular variables during submaximal or maximal exercise. RESULTS: Despite the masks significantly increasing end-expired peri-oral %CO2 and reducing %O2, each ∼0.8-2% during exercise (P < 0.05), our results supported the hypotheses. Specifically, none of these masks reduced sub-maximal or maximal exercise arterial O2 saturation (P = 0.744), but ratings of dyspnea were significantly increased (P = 0.007). Moreover, maximal exercise capacity was not compromised nor were there any significant alterations of primary cardiovascular responses (mean arterial pressure, stroke volume, cardiac output) found during sub-maximal exercise. CONCLUSION: Whereas these results are for young healthy recreational male and female exercisers and cannot be applied directly to elite athletes, older or patient populations, they do support that arterial hypoxemia and exercise intolerance are not the obligatory consequences of COVID-19-indicated mask-wearing at least for cycling exercise.


Assuntos
COVID-19/prevenção & controle , Tolerância ao Exercício/fisiologia , Máscaras/efeitos adversos , Oxigênio/sangue , Adulto , Feminino , Humanos , Masculino , SARS-CoV-2
7.
Respir Physiol Neurobiol ; 293: 103718, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34126260

RESUMO

We tested the hypothesis that limb vascular conductance (LVC) would increase during the immediate recovery phase of dynamic exercise above, but not below, critical power (CP) indicating a threshold for muscular contraction-induced impedance of limb blood flow (LBF). CP (115 ± 26 W) was determined in 7 men and 7 women who subsequently performed ∼5 min of near-supine cycling exercise both below and above CP. LVC demonstrated a greater increase during immediate recovery and remained significantly higher following exercise above, compared to below, CP (all p < 0.001). Power output was associated with the immediate increases in LVC following exercise above, but not below, CP (p < 0.001; r = 0.85). Additionally, variance in percent LBF impedance was significantly lower above (CV: 10.7 %), compared to below (CV: 53.2 %), CP (p < 0.01). CP appears to represent a threshold above which the characteristics of LBF impedance by muscular contraction become intensity-dependent. These data suggest a critical level of LBF impedance relative to contraction intensity exists and, once attained, may promote the progressive metabolic and neuromuscular responses known to occur above CP.


Assuntos
Circulação Sanguínea/fisiologia , Exercício Físico/fisiologia , Extremidade Inferior/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Ciclismo/fisiologia , Impedância Elétrica , Feminino , Artéria Femoral/diagnóstico por imagem , Artéria Femoral/fisiologia , Humanos , Masculino , Ultrassonografia Doppler , Adulto Jovem
8.
Int J Cardiol Hypertens ; 9: 100085, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34095811

RESUMO

BACKGROUND: Cancer survivors are at greater risk for cardiovascular disease (CVD) than second malignancy, resulting in a decreased quality of life and increased cost of care. Additional knowledge of CVD prevention by identifying possible risk factors has clinical relevance. Our main objective was to determine the relevance of a clinical index of arterial stiffness, pulse pressure, in predicting CVD mortality in cancer patients, with a second objective to examine its relationship with cancer mortality. METHODS: We retrospectively analyzed 781 cancer patients from Third National Health and Nutrition Examination Survey and Linked Mortality File, including demographic, anthropometric, blood pressure, and cause of death. Kaplan-Meier survival curve and Cox hazard regression analyses were performed to assess the relationship between pulse pressure and cardiovascular, cancer, and all-cause mortality. RESULTS: During a mean follow-up time of 8.1 years, 603 deaths, 257 cancer and 151 CVD, occurred. In unadjusted models, the risk of CVD, cancer, and all-cause mortality were 3.8-fold, 5.3-fold, and 1.6-fold higher, respectively, for pulse pressure ≥70 â€‹mmHg compared to <50 â€‹mmHg. Adjusted analyses revealed a higher CVD mortality in cancer patients <65 years with a pulse pressure 60-70 â€‹mmHg (adjusted hazard ratio, 5.26; 95%CI, 1.12-24.78) when compared to pulse pressure of <50 â€‹mmHg. Pulse pressure was not associated with risk of all-cause, CVD, or cancer in those ≥65 years. CONCLUSION: Pulse pressure, an index of arterial stiffness, is predictive of CVD mortality in cancer patients. Our findings support non-invasive office-setting measurements of arterial stiffness to identify high risk patients.

9.
Cardiooncology ; 7(1): 18, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985593

RESUMO

PURPOSE: Cancer patients with a history of radiotherapy are at an increased risk of ischemic heart disease. Preclinical animal studies demonstrate markedly impaired acetylcholine (ACh)-mediated endothelium-dependent vasorelaxation within days to weeks post-irradiation, however, whether microvascular function is affected in the intact human circulation during cancer radiation therapy has yet to be determined. MATERIALS AND METHODS: Using laser-Doppler flowmetry, microvascular endothelium-dependent and independent responses were evaluated through iontophoresis of acetylcholine (ACh) (part 1, n = 7) and sodium nitroprusside (SNP) (part 2, n = 8), respectively, in women currently receiving unilateral chest adjuvant radiation therapy for breast cancer. Measurements were performed at the site of radiation treatment and at a contralateral control, non-radiated site. Cutaneous vascular conductance (CVC) was calculated by normalizing for mean arterial pressure. RESULTS AND CONCULSIONS: In part 1, patients received an average radiation dose of 2104 ± 236 cGy. A significantly lower peak ACh-mediated endothelium-dependent vasodilation was observed within the radiated microvasculature when compared to non-radiated (radiated: 532 ± 167%, non-radiated 1029 ± 263%; P = 0.02). In part 2, the average radiation dose received was 2251 ± 196 cGy. Iontophoresis of SNP elicited a similar peak endothelium-independent vasodilator response in radiated and non-radiated tissue (radiated: 179 ± 58%, non-radiated: 310 ± 158; P = 0.2). The time to 50% of the peak response for ACh and SNP was similar between radiated and non-radiated microvasculature (P < 0.05). These data provide evidence of early endothelium-dependent microvascular dysfunction in cancer patients currently receiving chest radiation and provide the scientific premise for future work evaluating coronary endothelial function and vasomotor reactivity using more detailed and invasive procedures.

10.
Appl Physiol Nutr Metab ; 45(6): 613-620, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31725319

RESUMO

High dietary sodium intake is a risk factor for arterial hypertension; given that the ability to overcome sympathetically mediated vasoconstriction (functional sympatholysis) is attenuated in individuals with hypertension, we investigated the cardiovascular responses to high salt (HS) intake in healthy humans. We hypothesized that a HS intake of 15 g/day for 7 days would attenuate functional sympatholysis and augment the blood pressure response to handgrip exercise (HGE). Thirteen participants (6 males, 7 females) underwent 2 individual days of testing. Beat-by-beat blood pressure and heart rate were recorded throughout the trial on the non-exercising limb. Forearm blood flow was derived from ultrasonography on the brachial artery of the exercising limb. Participants then underwent a flow-mediated dilation (FMD) test. Next, a submaximal HGE was performed for 7 min with lower body negative pressure initiated during minutes 5-7. A single spot urine sample revealed a significant increase in sodium excretion during the HS conditions (p < 0.01). FMD was reduced during the HS condition. Mean arterial pressure was significantly higher during HS intake. No alteration to functional sympatholysis was found between conditions (p > 0.05). In summary, HS intake increases blood pressure without impacting functional sympatholysis or blood pressure responsiveness during HGE. These findings indicate that brachial artery dysfunction precedes an inefficient functional sympatholysis. Novelty Functional sympatholysis was not impacted by 1 week of high sodium intake. High sodium intake augmented the rate pressure product during handgrip exercise in healthy humans.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Exercício Físico/fisiologia , Força da Mão/fisiologia , Sódio na Dieta/farmacologia , Adolescente , Adulto , Método Duplo-Cego , Feminino , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipertensão , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...