Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Therm Biol ; 114: 103545, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37290261

RESUMO

Plasticity in the critical thermal maximum (CTmax) helps ectotherms survive in variable thermal conditions. Yet, little is known about the environmental mechanisms modulating its time course. We used the larvae of three neotropical anurans (Boana platanera, Engystomops pustulosus and Rhinella horribilis) to test whether the magnitude of temperature changes and the existence of fluctuations in the thermal environment affected both the amount of change in CTmax and its acclimation rate (i.e., its time course). For that, we transferred tadpoles from a pre-treatment temperature (23 °C, constant) to two different water temperatures: mean (28 °C) and hot (33 °C), crossed with constant and daily fluctuating thermal regimes, and recorded CTmax values, daily during six days. We modeled changes in CTmax as an asymptotic function of time, temperature, and the daily thermal fluctuation. The fitted function provided the asymptotic CTmax value (CTmax∞) and CTmax acclimation rate (k). Tadpoles achieved their CTmax∞ between one and three days. Transferring tadpoles to the hot treatment generated higher CTmax∞ at earlier times, inducing faster acclimation rates in tadpoles. In contrast, thermal fluctuations equally led to higher CTmax∞ values but tadpoles required longer times to achieve CTmax∞ (i.e., slower acclimation rates). These thermal treatments interacted differently with the studied species. In general, the thermal generalist Rhinella horribilis showed the most plastic acclimation rates whereas the ephemeral-pond breeder Engystomops pustulosus, more exposed to heat peaks during larval development, showed less plastic (i.e., canalized) acclimation rates. Further comparative studies of the time course of CTmax acclimation should help to disentangle the complex interplay between the thermal environment and species ecology, to understand how tadpoles acclimate to heat stress.


Assuntos
Aclimatação , Resposta ao Choque Térmico , Animais , Temperatura , Larva , Anuros , Temperatura Alta
2.
J Exp Zool A Ecol Integr Physiol ; 337(7): 746-759, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674344

RESUMO

Current climate change is generating accelerated increase in extreme heat events and organismal plastic adjustments in upper thermal tolerances, (critical thermal maximum -CTmax ) are recognized as the quicker mitigating mechanisms. However, current research casts doubt on the actual mitigating role of thermal acclimation to face heat impacts, due to its low magnitude and weak environmental signal. Here, we examined these drawbacks by first estimating maximum extent of thermal acclimation by examining known sources of variation affecting CTmax expression, such as daily thermal fluctuation and heating rates. Second, we examined whether the magnitude and pattern of CTmax plasticity is dependent of the thermal environment by comparing the acclimation responses of six species of tropical amphibian tadpoles inhabiting thermally contrasting open and shade habitats and, finally, estimating their warming tolerances (WT = CTmax - maximum temperatures) as estimator of heating risk. We found that plastic CTmax responses are improved in tadpoles exposed to fluctuating daily regimens. Slow heating rates implying longer duration assays determined a contrasting pattern in CTmax plastic expression, depending on species environment. Shade habitat species suffer a decline in CTmax whereas open habitat tadpoles greatly increase it, suggesting an adaptive differential ability of hot exposed species to quick hardening adjustments. Open habitat tadpoles although overall acclimate more than shade habitat species, cannot capitalize this beneficial increase in CTmax, because the maximum ambient temperatures are very close to their critical limits, and this increase may not be large enough to reduce acute heat stress under the ongoing global warming.


Assuntos
Anfíbios , Mudança Climática , Termotolerância , Aclimatação , Anfíbios/fisiologia , Animais , Ecossistema , Larva/fisiologia , Temperatura , Termotolerância/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...