Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1280847, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38027209

RESUMO

Background: In vitro maturation (IVM) of germinal vesicle intact oocytes prior to in vitro fertilization (IVF) is practiced widely in animals. In human assisted reproduction it is generally reserved for fertility preservation or where ovarian stimulation is contraindicated. Standard practice incorporates complex proteins (CP), in the form of serum and/or albumin, into IVM media to mimic the ovarian follicle environment. However, the undefined nature of CP, together with batch variation and ethical concerns regarding their origin, necessitate the development of more defined formulations. A known component of follicular fluid, melatonin, has multifaceted roles including that of a metabolic regulator and antioxidant. In certain circumstances it can enhance oocyte maturation. At this stage in development, the germinal-vesicle intact oocyte is prone to aneuploidy and epigenetic dysregulation. Objectives: To determine the developmental, cytogenetic and epigenetic consequences of removing CP and including melatonin during bovine IVM. Materials and methods: The study comprised a 2 x 2 factorial arrangement comparing (i) the inclusion or exclusion of CP, and (ii) the addition (100 nM) or omission of melatonin, during IVM. Cumulus-oocyte complexes (COCs) were retrieved from stimulated cycles. Following IVM and IVF, putative zygotes were cultured to Day 8 in standard media. RNAseq was performed on isolated cumulus cells, cytogenetic analyses (SNP-based algorithms) on isolated trophectoderm cells, and DNA methylation analysis (reduced representation bisulfite sequencing) on isolated cells of the inner-cell mass. Results: Removal of CP during IVM led to modest reductions in blastocyst development, whilst added melatonin was beneficial in the presence but detrimental in the absence of CP. The composition of IVM media did not affect the nature or incidence of chromosomal abnormalities but cumulus-cell transcript expression indicated altered metabolism (primarily lipid) in COCs. These effects preceded the establishment of distinct metabolic and epigenetic signatures several days later in expanded and hatching blastocysts. Conclusions: These findings highlight the importance of lipid, particularly sterol, metabolism by the COC during IVM. They lay the foundation for future studies that seek to develop chemically defined systems of IVM for the generation of transferrable embryos that are both cytogenetically and epigenetically normal.


Assuntos
Melatonina , Feminino , Animais , Bovinos , Humanos , Melatonina/farmacologia , Melatonina/metabolismo , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Análise Citogenética , Epigênese Genética , Lipídeos
2.
Cells ; 10(9)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571932

RESUMO

Approximately one million in vitro produced (IVP) cattle embryos are transferred worldwide each year as a way to improve the rates of genetic gain. The most advanced programmes also apply genomic selection at the embryonic stage by SNP genotyping and the calculation of genomic estimated breeding values (GEBVs). However, a high proportion of cattle embryos fail to establish a pregnancy. Here, we demonstrate that further interrogation of the SNP data collected for GEBVs can effectively remove aneuploid embryos from the pool, improving live births per embryo transfer (ET). Using three preimplantation genetic testing for aneuploidy (PGT-A) approaches, we assessed 1713 cattle blastocysts in a blind, retrospective analysis. Our findings indicate aneuploid embryos have a 5.8% chance of establishing a pregnancy and a 5.0% chance of given rise to a live birth. This compares to 59.6% and 46.7% for euploid embryos (p < 0.0001). PGT-A improved overall pregnancy and live birth rates by 7.5% and 5.8%, respectively (p < 0.0001). More detailed analyses revealed donor, chromosome, stage, grade, and sex-specific rates of error. Notably, we discovered a significantly higher incidence of aneuploidy in XY embryos and, as in humans, detected a preponderance of maternal meiosis I errors. Our data strongly support the use of PGT-A in cattle IVP programmes.


Assuntos
Aneuploidia , Coeficiente de Natalidade/tendências , Testes Genéticos/métodos , Nascido Vivo , Diagnóstico Pré-Implantação/métodos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Bovinos , Feminino , Fertilização in vitro/métodos , Gravidez , Estudos Retrospectivos
3.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673278

RESUMO

One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.


Assuntos
Blastocisto/metabolismo , Carbono/metabolismo , Metilação de DNA , Epigênese Genética , Células da Granulosa/metabolismo , Oócitos/metabolismo , Células Tecais/metabolismo , Animais , Bovinos , Feminino , Células Hep G2 , Humanos , Ratos , Suínos
4.
Anim Reprod Sci ; 219: 106546, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32828417

RESUMO

Whilst adoption of in vitro production (IVP) of cattle embryos and subsequent biopsy for genetic evaluation is increasing, biopsy techniques primarily used were developed to sample in vivo-produced blastocysts. This study was conducted to develop a laser-assisted blastomere extrusion approach for rapid and minimal-invasive biopsy of IVP cattle embryos at pre-morula to morula stages of development (Day 5 or 6 post-fertilisation). Embryo development into blastocysts was not compromised when ≤3 cells were collected by blastomere extrusion on Day 5 (44.4 ± 4.4 % and 34.3 ± 4.6 %) or Day 6 (58.0 ± 4.3 % and 57.5 ± 5.3 %) post-fertilisation compared with non-biopsied control embryos. Similarly, capacity to withstand cryopreservation was not different between embryos biopsied at Day 5 and 6 post-fertilisation and control-embryos (58.8 ± 6.0 %, 63.5 ± 5.6 %, and 56.0 ± 4.8 %, respectively). When more cells were collected from embryos at Day 6 post-fertilisation (≥8 compared to ≤3 cells), subsequent embryo development was not different (63.6 ± 6.1 % and 73.1 ± 6.2 %, respectively) nor was the capacity to withstand cryopreservation (67.9 ± 9.0 % and 62.5 ± 8.7 %, respectively). For biopsies on Day 6 post-fertilization, 95 % of samples produced a PCR product; however, when compared to the whole embryo PCR results, approximately 11 % of biopsy-samples classified as being from a male embryo were from female embryos (false positive), indicating DNA contamination between samples. In conclusion, results of this study indicate laser-assisted blastomere extrusion is a time efficient and minimally invasive approach to biopsy IVP morula and pre-morula cattle embryos to facilitate genetic analysis.


Assuntos
Blastômeros/patologia , Bovinos/embriologia , Fase de Clivagem do Zigoto/patologia , Lasers , Mórula/patologia , Animais , Biópsia/métodos , Biópsia/veterinária , Blastocisto/patologia , Células Cultivadas , Criopreservação/veterinária , Técnicas de Cultura Embrionária/veterinária , Embrião de Mamíferos/patologia , Desenvolvimento Embrionário/fisiologia , Feminino , Fertilização in vitro/veterinária , Lasers/efeitos adversos , Masculino , Reação em Cadeia da Polimerase/veterinária , Diagnóstico Pré-Implantação/métodos , Diagnóstico Pré-Implantação/veterinária
5.
Theriogenology ; 79(6): 946-52, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23434358

RESUMO

Sperm chromatin status was assessed in 565 Zebu and Zebu crossbred beef bulls in extensive tropical environments using the sperm chromatin structure assay (SCSA). The SCSA involved exposure of sperm to acid hydrolysis for 0.5 or 5.0 minutes, followed by flow cytometry to ascertain relative amounts of double-stranded (normal) and single-stranded (denatured) DNA, which was used to generate a DNA fragmentation index (%DFI). With conventional SCSA (0.5-minute SCSA), 513 bulls (91%) had <15 %DFI, 24 bulls (4%) had 15 to 27 %DFI, and 28 bulls (5%) had >27 %DFI. In 5.0-minute SCSA, 432 bulls (76%) had <15 %DFI, 68 bulls (12%) had 15 to 27 %DFI and 65 bulls (12%) had >27 %DFI. For most bulls, the SCSA was repeatable on two to four occasions; however, because most bulls had <15 %DFI, repeatability of the SCSA will need to be determined in a larger number of bulls in the 15 to 27 %DFI and >27 %DFI categories. The %DFI was negatively correlated with several bull semen parameters and the strongest negative correlation was with normal sperm. There was a strong positive correlation between %DFI and sperm head abnormalities. Based on these findings, most Zebu beef bulls in extensive tropical environments had relatively stable sperm chromatin. Based on the apparent negative correlations with conventional semen parameters, we inferred that the SCSA measured a unique feature of sperm quality, which has also been suggested for other species. Further studies on the relationships between sperm chromatin stability and fertility are required in beef bulls before chromatin status can be used as an additional predictor of the siring capacity of individual bulls in extensive multiple-sire herds.


Assuntos
Bovinos/fisiologia , Cromatina/fisiologia , Espermatozoides/fisiologia , Clima Tropical , Animais , Cromatina/química , Fragmentação do DNA , Fertilidade , Masculino
6.
Development ; 136(14): 2385-91, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19515696

RESUMO

Developmental defects caused by targeted gene inactivation in mice are commonly subject to strain-specific modifiers that modulate the severity of the phenotype. Although several genetic modifier loci have been mapped in mice, the gene(s) residing at these loci are mostly unidentified, and the molecular mechanisms of modifier action remain poorly understood. Mutations in Sox18 cause a variable phenotype in the human congenital syndrome hypotrichosis-lymphedema-telangiectasia, and the phenotype of Sox18-null mice varies from essentially normal to completely devoid of lymphatic vasculature and lethal, depending on the strain of the mice, suggesting a crucial role for strain-specific modifiers in this system. Here we show that two closely related Group F Sox factors, SOX7 and SOX17, are able to functionally substitute for SOX18 in vitro and in vivo. SOX7 and SOX17 are not normally expressed during lymphatic development, excluding a conventional redundancy mechanism. Instead, these genes are activated specifically in the absence of SOX18 function, and only in certain strains. Our studies identify Sox7 and Sox17 as modifiers of the Sox18 mutant phenotype, and reveal their mechanism of action as a novel mode of strain-specific compensatory upregulation.


Assuntos
Proteínas HMGB/fisiologia , Linfangiogênese/fisiologia , Fatores de Transcrição SOXF/fisiologia , Animais , Sequência de Bases , Primers do DNA/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas HMGB/genética , Proteínas de Homeodomínio/genética , Humanos , Hipotricose/genética , Linfangiogênese/genética , Linfedema/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Especificidade da Espécie , Síndrome , Telangiectasia/genética , Proteínas Supressoras de Tumor/genética , Regulação para Cima
7.
Nature ; 456(7222): 643-7, 2008 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-18931657

RESUMO

The lymphatic system plays a key role in tissue fluid regulation and tumour metastasis, and lymphatic defects underlie many pathological states including lymphoedema, lymphangiectasia, lymphangioma and lymphatic dysplasia. However, the origins of the lymphatic system in the embryo, and the mechanisms that direct growth of the network of lymphatic vessels, remain unclear. Lymphatic vessels are thought to arise from endothelial precursor cells budding from the cardinal vein under the influence of the lymphatic hallmark gene Prox1 (prospero homeobox 1; ref. 4). Defects in the transcription factor gene SOX18 (SRY (sex determining region Y) box 18) cause lymphatic dysfunction in the human syndrome hypotrichosis-lymphoedema-telangiectasia, suggesting that Sox18 may also play a role in lymphatic development or function. Here we use molecular, cellular and genetic assays in mice to show that Sox18 acts as a molecular switch to induce differentiation of lymphatic endothelial cells. Sox18 is expressed in a subset of cardinal vein cells that later co-express Prox1 and migrate to form lymphatic vessels. Sox18 directly activates Prox1 transcription by binding to its proximal promoter. Overexpression of Sox18 in blood vascular endothelial cells induces them to express Prox1 and other lymphatic endothelial markers, while Sox18-null embryos show a complete blockade of lymphatic endothelial cell differentiation from the cardinal vein. Our findings demonstrate a critical role for Sox18 in developmental lymphangiogenesis, and suggest new avenues to investigate for therapeutic management of human lymphangiopathies.


Assuntos
Diferenciação Celular , Vasos Linfáticos/citologia , Vasos Linfáticos/embriologia , Fatores de Transcrição SOXF/metabolismo , Animais , Biomarcadores/análise , Movimento Celular , Células Cultivadas , Edema/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Efrina-B2/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Hipotricose/genética , Linfangiogênese , Vasos Linfáticos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXF/deficiência , Fatores de Transcrição SOXF/genética , Telangiectasia/genética , Proteínas Supressoras de Tumor/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Veias/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...