Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 365, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759158

RESUMO

Echocardiographic interpretation during the prenatal or postnatal period is important for diagnosing cardiac septal abnormalities. However, manual interpretation can be time consuming and subject to human error. Automatic segmentation of echocardiogram can support cardiologists in making an initial interpretation. However, such a process does not always provide straightforward information to make a complete interpretation. The segmentation process only identifies the region of cardiac septal abnormality, whereas complete interpretation should determine based on the position of defect. In this study, we proposed a stacked residual-dense network model to segment the entire region of cardiac and classifying their defect positions to generate automatic echocardiographic interpretation. We proposed the generalization model with incorporated two modalities: prenatal and postnatal echocardiography. To further evaluate the effectiveness of our model, its performance was verified by five cardiologists. We develop a pipeline process using 1345 echocardiograms for training data and 181 echocardiograms for unseen data from prospective patients acquired during standard clinical practice at Muhammad Hoesin General Hospital in Indonesia. As a result, the proposed model produced of 58.17% intersection over union (IoU), 75.75% dice similarity coefficient (DSC), and 76.36% mean average precision (mAP) for the validation data. Using unseen data, we achieved 42.39% IoU, 55.72% DSC, and 51.04% mAP. Further, the classification of defect positions using unseen data had approximately 92.27% accuracy, 94.33% specificity, and 92.05% sensitivity. Finally, our proposed model is validated with human expert with varying Kappa value. On average, these results hold promise of increasing suitability in clinical practice as a supporting diagnostic tool for establishing the diagnosis.


Assuntos
Ecocardiografia , Coração , Feminino , Gravidez , Humanos , Estudos Prospectivos
2.
Sci Rep ; 13(1): 13736, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612382

RESUMO

Knowledge of electrocardiogram (ECG) wave signals is one of the essential steps in diagnosing heart abnormalities. Considerable performance with respect to obtaining the critical point of a signal waveform (P-QRS-T) through ECG delineation has been achieved in many studies. However, several deficiencies remain regarding previous methods, including the effects of noise interference on the performance degradation of delineation and the role of medical knowledge in reaching a delineation decision. To address these challenges, this paper proposes a robust delineation model based on a convolutional recurrent network with grid search optimization, aiming to classify the precise P-QRS-T waves. In order to make a delineation decision, the results from the ECG waveform classification model are utilized to interpret morphological abnormalities, based on medical knowledge. We generated 36 models, and the model with the best results achieved 99.97% accuracy, 99.92% sensitivity, and 99.93% precision for ECG waveform classification (P-wave, QRS-complex, T-wave, and isoelectric line class). To ensure the model robustness, we evaluated delineation model performance on seven different types of ECG datasets, namely the Lobachevsky University Electrocardiography Database (LUDB), QT Database (QTDB), the PhysioNet/Computing in Cardiology Challenge 2017, China Physiological Signal Challenge 2018, ECG Arrhythmia of Chapman University, MIT-BIH Arrhythmia Database and General Mohammad Hossein Hospital (Indonesia) databases. To detect the patterns of ECG morphological abnormalities through proposed delineation model, we focus on investigating arrhythmias. This process is based on two inputs examination: the P-wave and the regular/irregular rhythm of the RR interval. As the results, the proposed method has considerable capability to interpret the delineation result in cases with artifact noise, baseline drift and abnormal morphologies for delivering robust ECG delineation.


Assuntos
Cardiologia , Eletrocardiografia , Humanos , Artefatos , China , Sistemas Computacionais
3.
BMC Med Inform Decis Mak ; 23(1): 139, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507698

RESUMO

BACKGROUND: Signal delineation of a standard 12-lead electrocardiogram (ECG) is a decisive step for retrieving complete information and extracting signal characteristics for each lead in cardiology clinical practice. However, it is arduous to manually assess the leads, as a variety of signal morphological variations in each lead have potential defects in recording, noise, or irregular heart rhythm/beat. METHOD: A computer-aided deep-learning algorithm is considered a state-of-the-art delineation model to classify ECG waveform and boundary in terms of the P-wave, QRS-complex, and T-wave and indicated the satisfactory result. This study implemented convolution layers as a part of convolutional neural networks for automated feature extraction and bidirectional long short-term memory as a classifier. For beat segmentation, we have experimented beat-based and patient-based approach. RESULTS: The empirical results using both beat segmentation approaches, with a total of 14,588 beats were showed that our proposed model performed excellently well. All performance metrics above 95% and 93%, for beat-based and patient-based segmentation, respectively. CONCLUSIONS: This is a significant step towards the clinical pertinency of automated 12-lead ECG delineation using deep learning.


Assuntos
Aprendizado Profundo , Humanos , Frequência Cardíaca , Algoritmos , Redes Neurais de Computação , Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador
4.
Med Biol Eng Comput ; 61(9): 2405-2416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37185967

RESUMO

Visual inspection with acetic acid (VIA) is a pre-cancerous screening program for low-middle-income countries (LMICs). Due to the limited number of oncology-gynecologist clinicians in LMICs, VIA examinations are performed mainly by medical workers. However, the inability of the medical workers to recognize a significant pattern based on cervicograms, VIA examination produces high inter-observer variance and high false-positive rate. This study proposed an automated cervicogram interpretation using explainable convolutional neural networks named "CervicoXNet" to support medical workers decision. The total number of 779 cervicograms was used for the learning process: 487 with VIA ( +) and 292 with VIA ( -). We performed data augmentation process under a geometric transformation scenario, such process produces 7325 cervicogram with VIA ( -) and 7242 cervicogram with VIA ( +). The proposed model outperformed other deep learning models, with 99.22% accuracy, 100% sensitivity, and 98.28% specificity. Moreover, to test the robustness of the proposed model, colposcope images used to validate the model's generalization ability. The results showed that the proposed architecture still produced satisfactory performance, with 98.11% accuracy, 98.33% sensitivity, and 98% specificity. It can be proven that the proposed model has been achieved satisfactory results. To make the prediction results visually interpretable, the results are localized with a heat map in fine-grained pixels using a combination of Grad-CAM and guided backpropagation. CervicoXNet can be used an alternative early screening tool with VIA alone.


Assuntos
Ácido Acético , Redes Neurais de Computação , Humanos
5.
PLoS One ; 17(12): e0277932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584187

RESUMO

BACKGROUND: The electrocardiogram (ECG) is a widely used diagnostic that observes the heart activities of patients to ascertain a heart abnormality diagnosis. The artifacts or noises are primarily associated with the problem of ECG signal processing. Conventional denoising techniques have been proposed in previous literature; however, some lacks, such as the determination of suitable wavelet basis function and threshold, can be a time-consuming process. This paper presents end-to-end learning using a denoising auto-encoder (DAE) for denoising algorithms and convolutional-bidirectional long short-term memory (ConvBiLSTM) for ECG delineation to classify ECG waveforms in terms of the PQRST-wave and isoelectric lines. The denoising reconstruction using unsupervised learning based on the encoder-decoder process can be proposed to improve the drawbacks. First, The ECG signals are reduced to a low-dimensional vector in the encoder. Second, the decoder reconstructed the signals. The last, the reconstructed signals of ECG can be processed to ConvBiLSTM. The proposed architecture of DAE-ConvBiLSTM is the end-to-end diagnosis of heart abnormality detection. RESULTS: As a result, the performance of DAE-ConvBiLSTM has obtained an average of above 98.59% accuracy, sensitivity, specificity, precision, and F1 score from the existing studies. The DAE-ConvBiLSTM has also experimented with detecting T-wave (due to ventricular repolarisation) morphology abnormalities. CONCLUSION: The development architecture for detecting heart abnormalities using an unsupervised learning DAE and supervised learning ConvBiLSTM can be proposed for an end-to-end learning algorithm. In the future, the precise accuracy of the ECG main waveform will affect heart abnormalities detection in clinical practice.


Assuntos
Cardiopatias Congênitas , Processamento de Sinais Assistido por Computador , Humanos , Algoritmos , Eletrocardiografia/métodos , Arritmias Cardíacas/diagnóstico
6.
J Clin Med ; 11(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36362685

RESUMO

Early prenatal screening with an ultrasound (US) can significantly lower newborn mortality caused by congenital heart diseases (CHDs). However, the need for expertise in fetal cardiologists and the high volume of screening cases limit the practically achievable detection rates. Hence, automated prenatal screening to support clinicians is desirable. This paper presents and analyses potential deep learning (DL) techniques to diagnose CHDs in fetal USs. Four convolutional neural network architectures were compared to select the best classifier with satisfactory results. Hence, dense convolutional network (DenseNet) 201 architecture was selected for the classification of seven CHDs, such as ventricular septal defect, atrial septal defect, atrioventricular septal defect, Ebstein's anomaly, tetralogy of Fallot, transposition of great arteries, hypoplastic left heart syndrome, and a normal control. The sensitivity, specificity, and accuracy of the DenseNet201 model were 100%, 100%, and 100%, respectively, for the intra-patient scenario and 99%, 97%, and 98%, respectively, for the inter-patient scenario. We used the intra-patient DL prediction model to validate our proposed model against the prediction results of three expert fetal cardiologists. The proposed model produces a satisfactory result, which means that our model can support expert fetal cardiologists to interpret the decision to improve CHD diagnostics. This work represents a step toward the goal of assisting front-line sonographers with CHD diagnoses at the population level.

7.
Sensors (Basel) ; 22(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35336500

RESUMO

Physicians manually interpret an electrocardiogram (ECG) signal morphology in routine clinical practice. This activity is a monotonous and abstract task that relies on the experience of understanding ECG waveform meaning, including P-wave, QRS-complex, and T-wave. Such a manual process depends on signal quality and the number of leads. ECG signal classification based on deep learning (DL) has produced an automatic interpretation; however, the proposed method is used for specific abnormality conditions. When the ECG signal morphology change to other abnormalities, it cannot proceed automatically. To generalize the automatic interpretation, we aim to delineate ECG waveform. However, the output of delineation process only ECG waveform duration classes for P-wave, QRS-complex, and T-wave. It should be combined with a medical knowledge rule to produce the abnormality interpretation. The proposed model is applied for atrial fibrillation (AF) identification. This study meets the AF criteria with RR irregularities and the absence of P-waves in essential oscillations for even more accurate identification. The QT database by Physionet is utilized for developing the delineation model, and it validates with The Lobachevsky University Database. The results show that our delineation model works properly, with 98.91% sensitivity, 99.01% precision, 99.79% specificity, 99.79% accuracy, and a 98.96% F1 score. We use about 4058 normal sinus rhythm records and 1804 AF records from the experiment to identify AF conditions that are taken from three datasets. The comprehensive testing has produced higher negative predictive value and positive predictive value. This means that the proposed model can identify AF conditions from ECG signal delineation. Our approach can considerably contribute to AF diagnosis with these results.


Assuntos
Fibrilação Atrial , Aprendizado Profundo , Fibrilação Atrial/diagnóstico , Bases de Dados Factuais , Eletrocardiografia/métodos , Humanos , Valor Preditivo dos Testes
8.
PeerJ Comput Sci ; 8: e825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174263

RESUMO

BACKGROUND: Electrocardiogram (ECG) signal classification plays a critical role in the automatic diagnosis of heart abnormalities. While most ECG signal patterns cannot be recognized by a human interpreter, they can be detected with precision using artificial intelligence approaches, making the ECG a powerful non-invasive biomarker. However, performing rapid and accurate ECG signal classification is difficult due to the low amplitude, complexity, and non-linearity. The widely-available deep learning (DL) method we propose has presented an opportunity to substantially improve the accuracy of automated ECG classification analysis using rhythm or beat features. Unfortunately, a comprehensive and general evaluation of the specific DL architecture for ECG analysis across a wide variety of rhythm and beat features has not been previously reported. Some previous studies have been concerned with detecting ECG class abnormalities only through rhythm or beat features separately. METHODS: This study proposes a single architecture based on the DL method with one-dimensional convolutional neural network (1D-CNN) architecture, to automatically classify 24 patterns of ECG signals through both rhythm and beat. To validate the proposed model, five databases which consisted of nine-class of ECG-base rhythm and 15-class of ECG-based beat were used in this study. The proposed DL network was applied and studied with varying datasets with different frequency samplings in intra and inter-patient scheme. RESULTS: Using a 10-fold cross-validation scheme, the performance results had an accuracy of 99.98%, a sensitivity of 99.90%, a specificity of 99.89%, a precision of 99.90%, and an F1-score of 99.99% for ECG rhythm classification. Additionally, for ECG beat classification, the model obtained an accuracy of 99.87%, a sensitivity of 96.97%, a specificity of 99.89%, a precision of 92.23%, and an F1-score of 94.39%. In conclusion, this study provides clinicians with an advanced methodology for detecting and discriminating heart abnormalities between different ECG rhythm and beat assessments by using one outstanding proposed DL architecture.

9.
Sensors (Basel) ; 21(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884008

RESUMO

Accurate segmentation of fetal heart in echocardiography images is essential for detecting the structural abnormalities such as congenital heart defects (CHDs). Due to the wide variations attributed to different factors, such as maternal obesity, abdominal scars, amniotic fluid volume, and great vessel connections, this process is still a challenging problem. CHDs detection with expertise in general are substandard; the accuracy of measurements remains highly dependent on humans' training, skills, and experience. To make such a process automatic, this study proposes deep learning-based computer-aided fetal heart echocardiography examinations with an instance segmentation approach, which inherently segments the four standard heart views and detects the defect simultaneously. We conducted several experiments with 1149 fetal heart images for predicting 24 objects, including four shapes of fetal heart standard views, 17 objects of heart-chambers in each view, and three cases of congenital heart defect. The result showed that the proposed model performed satisfactory performance for standard views segmentation, with a 79.97% intersection over union and 89.70% Dice coefficient similarity. It also performed well in the CHDs detection, with mean average precision around 98.30% for intra-patient variation and 82.42% for inter-patient variation. We believe that automatic segmentation and detection techniques could make an important contribution toward improving congenital heart disease diagnosis rates.


Assuntos
Aprendizado Profundo , Cardiopatias Congênitas , Computadores , Ecocardiografia , Feminino , Coração Fetal/diagnóstico por imagem , Cardiopatias Congênitas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Gravidez
10.
BMC Med Inform Decis Mak ; 21(1): 216, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34261486

RESUMO

BACKGROUND: Generalization model capacity of deep learning (DL) approach for atrial fibrillation (AF) detection remains lacking. It can be seen from previous researches, the DL model formation used only a single frequency sampling of the specific device. Besides, each electrocardiogram (ECG) acquisition dataset produces a different length and sampling frequency to ensure sufficient precision of the R-R intervals to determine the heart rate variability (HRV). An accurate HRV is the gold standard for predicting the AF condition; therefore, a current challenge is to determine whether a DL approach can be used to analyze raw ECG data in a broad range of devices. This paper demonstrates powerful results for end-to-end implementation of AF detection based on a convolutional neural network (AFibNet). The method used a single learning system without considering the variety of signal lengths and frequency samplings. For implementation, the AFibNet is processed with a computational cloud-based DL approach. This study utilized a one-dimension convolutional neural networks (1D-CNNs) model for 11,842 subjects. It was trained and validated with 8232 records based on three datasets and tested with 3610 records based on eight datasets. The predicted results, when compared with the diagnosis results indicated by human practitioners, showed a 99.80% accuracy, sensitivity, and specificity. RESULT: Meanwhile, when tested using unseen data, the AF detection reaches 98.94% accuracy, 98.97% sensitivity, and 98.97% specificity at a sample period of 0.02 seconds using the DL Cloud System. To improve the confidence of the AFibNet model, it also validated with 18 arrhythmias condition defined as Non-AF-class. Thus, the data is increased from 11,842 to 26,349 instances for three-class, i.e., Normal sinus (N), AF and Non-AF. The result found 96.36% accuracy, 93.65% sensitivity, and 96.92% specificity. CONCLUSION: These findings demonstrate that the proposed approach can use unknown data to derive feature maps and reliably detect the AF periods. We have found that our cloud-DL system is suitable for practical deployment.


Assuntos
Fibrilação Atrial , Humanos , Algoritmos , Fibrilação Atrial/diagnóstico , Eletrocardiografia , Frequência Cardíaca , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...