Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
3 Biotech ; 14(7): 179, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38882640

RESUMO

Thermoalkaliphilic lipase enzymes are mostly favored for use in the detergent industry. While there has been considerable research on Geobacillus lipases, a significant portion of these enzymes remains unexplored or undocumented in the scientific literature. This work performed in silico phylogeny, sequence alignment, structural and enzyme-substrate interaction analyses of the five thermoalkaliphilic lipases belonging to different Geobacillus species (Geobacillus stearothermophilus lipase = GsLip, Geobacillus sp. B4113_201601 lipase = Gb4Lip, Geobacillus kaustophilus HTA426 lipase = GkLip, Geobacillus sp. SP22 lipase = GspLip, Geobacillus sp. NTU 03 lipase = GntLip). For this purpose, unreviewed enzyme sequences of five Geobacillus thermoalkaliphilic lipases were analyzed at sequence and phylogeny levels. 3D homology enzyme models were built, validated, and investigated by different bioinformatics tools. The ligand interactions screening using seven para-nitrophenyl (pNP) esters and enzyme-ligand interactions were analyzed on Gb4Lip:pNP-C12 and BTL2:pNP-C12 by MD simulation. Biophysicochemical characteristic analysis showed that Gb4Lip had a theoretical T m value of above 65 ºC, and a higher aliphatic index indicating greater thermal stability. Sequence alignment showed a hydrophilic threonine in the α6 helix of Gb4Lip, indicating high enzymatic activity. A normalized temperature factor B (B'-factor) analysis showed that the lid domains of five lipases significantly possessed lower B'-factor values, compared to G. thermocatenulatus lipase 2 (BTL2), indicating that they had higher rigidity. Molecular docking results indicated that the five lipases had the highest binding affinity toward pNP-C12. The RMSF investigation revealed that the thermostability of Gb4Lip is influenced by specific molecular elements: D202-S203 within the αB region of the lid domain, and E274-Q275 within the b3 strand, as well as W278 in the b3-b4 loop, and H282 in the b4 strand of the Ca2+-binding region. MD simulation analysis showed that catalytic residue S114 and at least one oxyanion hole residue (F17 and/or Q114) in Gb4Lip frequently formed hydrogen bonds with the pNP-C12 ligand at 343 K and 348 K throughout the simulation process, indicating that Gb4Lip might catalyze relatively long-chain ligand pNP-C12 with high performance. In conclusion, Gb4Lip might be a more suitable candidate as the detergent additive. In addition, this investigation can offer valuable perspectives on Family I.5 lipases such as Gb4Lip for future exploration in the field of protein engineering. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-04023-5.

2.
Int J Biol Macromol ; 273(Pt 1): 132853, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838897

RESUMO

Lipases are remarkable biocatalysts, adept at catalyzing the breakdown of diverse compounds into glycerol, fatty acids, and mono- and di-glycerides via hydrolysis. Beyond this, they facilitate esterification, transesterification, alcoholysis, acidolysis, and more, making them versatile in industrial applications. In industrial processes, lipases that exhibit high stability are favored as they can withstand harsh conditions. However, most native lipases are unable to endure adverse conditions, making them unsuitable for industrial use. Protein engineering proves to be a potent technology in the development of lipases that can function effectively under challenging conditions and fulfill criteria for various industrial processes. This review concentrated on new trends in protein engineering to enhance the diversity of lipase genes and employed in silico methods for predicting and comprehensively analyzing target mutations in lipases. Additionally, key molecular factors associated with industrial characteristics of lipases, including thermostability, solvent tolerance, catalytic activity, and substrate preference have been elucidated. The present review delved into how industrial traits can be enhanced through directed evolution (epPCR, gene shuffling), rational design (FRESCO, ASR), combined engineering strategies (i.e. CAST, ISM, and FRISM) as protein engineering methodologies in contexts of biodiesel production, food processing, and applications of detergent, pharmaceutics, and plastic degradation.


Assuntos
Biotecnologia , Lipase , Engenharia de Proteínas , Lipase/genética , Lipase/metabolismo , Lipase/química , Engenharia de Proteínas/métodos , Biotecnologia/métodos , Biocatálise , Biocombustíveis , Estabilidade Enzimática , Esterificação , Especificidade por Substrato
3.
Environ Technol ; 41(17): 2229-2239, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30574839

RESUMO

We report on the fabrication of AqpZ immobilized flat sheet membranes. The effects of interfacial polymerization conditions as well as proteoliposome concentration were evaluated. Commercial AqpZ were used as positive control for cloned AqpZ. Specific permeate flux of membranes at higher proteoliposome concentrations increased up to 25 times higher than thin film composite membranes; however; MgSO4 rejection is lowered almost to 1.5%. FTIR and SEM confirm immobilization of proteoliposomes. Thermal analysis showed that increasing proteoliposome concentration has no positive effect on the incorporation of proteoliposomes into polyamide structures. On the contrary, at lower proteoliposome concentrations, incorporation of proteoliposomes was found better. When combined membrane performances were compared in terms of specific permeate flux; MgSO4 and humic rejection and flux recovery after humic acid filtration, the performance of cloned AqpZ incorporated membranes (having 0.1 mg/mL proteoliposome concentration and polyamide formed with 2 min piperazine reaction time) improved 1.7 times regarding TFC membranes. According to the results, increasing proteoliposome concentration did not improve nanofiltration membrane performance. On the contrary, lower proteoliposome concentrations were found to be more effective in increasing membrane performance.


Assuntos
Aquaporinas , Membranas Artificiais , Filtração , Proteolipídeos
4.
Extremophiles ; 23(5): 507-520, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31154531

RESUMO

The aim of this study was to isolate a novel esterase from a hypersaline lake by sequence-based metagenomics. The metagenomic DNA was isolated from the enriched hypersaline lake sediment. Degenerate primers targeting the conserved regions of lipolytic enzymes of halophilic microorganisms were used for polymerase chain reaction (PCR) and a whole gene was identified by genome walking. The gene was composed of 783 bp, which corresponds to 260 amino acids with a molecular weight of 28.2 kDa. The deduced amino acid sequence best matched with the esterase from Halomonas gudaonensis with an identity of 91%. Recombinantly expressed enzyme exhibited maximum activity towards pNP-hexanoate with a kcat value of 12.30 s-1. The optimum pH and temperature of the enzyme were found as 9 and 30 °C, respectively. The effects of NaCl, solvents, metal ions, detergents and enzyme inhibitors were also studied. In conclusion, a novel enzyme, named as hypersaline lake "Acigöl" esterase (hAGEst), was identified by sequence-based metagenomics. The high expression level, the ability to maintain activity at cold temperatures and tolerance to DMSO and metal ions are the most outstanding properties of the hAGEst.


Assuntos
Proteínas de Bactérias/genética , Esterases/genética , Metagenoma , Tolerância ao Sal , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Esterases/química , Esterases/metabolismo , Halomonas/enzimologia , Halomonas/genética , Lagos/microbiologia , Microbiota , Salinidade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...