Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 70(7): 1119-28, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18675451

RESUMO

The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos. The IVP embryos allow us to estimate the effect of in vitro procedures and the analysis of parthenogenetic embryos provides provisional information on maternal genomic imprinting. Among the 8 genes investigated, only Mest-1 showed differential expression in Day 21 parthenogenetic embryos compared to in vivo and IVP counterparts, indicating maternal imprinting of this gene. In addition, our expression analysis of single embryos revealed a more heterogeneous gene expression in IVP than in in vivo developed embryos, adding further to the hypothesis of transcriptional dysregulation induced by in vitro procedures, either by in vitro maturation, fertilization or culture. In conclusion, effects of genomic imprinting and of in vitro procedures for embryo production may influence the success of bovine embryo implantation.


Assuntos
Bovinos/embriologia , Implantação do Embrião/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Transferência Embrionária/veterinária , Fertilização in vitro/veterinária , Perfilação da Expressão Gênica , Impressão Genômica
2.
Reproduction ; 130(5): 681-94, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16264097

RESUMO

The processes of cellular differentiation were studied in somatic cell nuclear transfer (SCNT), in vitro cultured (IVC) and in vivo developed (in vivo) ovine embryos on days 7, 9, 11, 13, 17 and 19. SCNT embryos were constructed from in vitro matured oocytes and granulosa cells, and IVC embryos were produced by in vitro culture of in vivo fertilized zygotes. Most SCNT and IVC embryos were transferred to recipients on day 6 while some remained in culture for day 7 processing. In vivo embryos were collected as zygotes, transferred to intermediate recipients and retransferred to final recipients on day 6. All embryos were processed for examination by light and transmission electron microscopy or immunohistochemical labelling for alpha-1-fetoprotein and vimentin. Overall, morphological development of in vivo embryos was superior to IVC and SCNT embryos. Day 7 and particularly day 9 IVC and SCNT embryos had impaired hypoblast development, some lacking identifiable inner cell masses. On day 11, only in vivo and IVC embryos had developed an embryonic disc, and gastrulation was evident in half of in vivo embryos and one IVC embryo. By day 13, all in vivo embryos had completed gastrulation whereas IVC and SCNT embryos remained retarded. On days 17 and 19, in vivo embryos had significantly more somites and a more developed allantois than IVC and SCNT embryos. We conclude that IVC and particularly SCNT procedures cause a retardation of embryo development and cell differentiation at days 7-19 of gestation.


Assuntos
Blastocisto/ultraestrutura , Técnicas de Transferência Nuclear , Técnicas de Reprodução Assistida , Ovinos , Animais , Biomarcadores/análise , Blastocisto/química , Técnicas de Cultura Embrionária , Transferência Embrionária , Desenvolvimento Embrionário , Indução Embrionária , Feminino , Idade Gestacional , Imuno-Histoquímica/métodos , Microscopia Eletrônica , Gravidez , Vimentina/análise
3.
Reprod Suppl ; 61: 103-16, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14635930

RESUMO

The extensive use of embryo technologies has emphasized the need for assessing embryo quality by morphological techniques, such as transmission electron microscopy, immunocytochemistry for confocal laser scanning microscopy and fluorescence in situ hybridization. By a combination of these techniques, it has been possible to demonstrate: (i) that rRNA gene activation, as monitored by embryonic nucleolar development, is comparable in bovine embryos developed in vivo and produced in vitro, whereas reconstructed nuclear transfer embryos may be deviant, (ii) that generating embryos by both in vitro production and reconstruction by nuclear transfer is associated with increased occurrence of apoptosis, in particular in the inner cell mass of blastocysts, and (iii) that these two embryo production techniques are associated with increased occurrence of mixoploidy that is, embryos presenting a large population of normal diploid cells and a small population of abnormal haploid or polyploid cells. It is clear that blastocysts that appear healthy at stereomicroscopy may have subcellular defects. Therefore, the possibility of long-term evaluation in vitro of embryos after hatching has been examined. However, whereas embryos developing in vivo after hatching present a number of well defined developmental milestones, such as elongation of the trophoblast, formation of hypoblast and epiblast followed by differentiation of endoderm, mesoderm and ectoderm, in vitro culture systems for development beyond the blastocyst stage currently allow the embryo to complete only a single milestone, namely hypoblast formation.


Assuntos
Blastocisto/ultraestrutura , Bovinos/fisiologia , Transferência Embrionária/veterinária , Animais , Apoptose , Nucléolo Celular/ultraestrutura , Aberrações Cromossômicas/veterinária , Fase de Clivagem do Zigoto/ultraestrutura , Feminino , Microscopia Confocal , Microscopia Eletrônica , Microscopia de Fluorescência
4.
Reproduction ; 125(4): 607-23, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12683931

RESUMO

The problems of sustaining placenta formation in embryos produced by nuclear transfer have emphasized the need for basic knowledge about epiblast formation and gastrulation in bovine embryos. The aims of this study were to define stages of bovine post-hatching embryonic development and to analyse functional mechanisms of germ-layer formation. Embryos developed in vivo were collected after slaughter from superovulated cows on days 9, 11, 14 and 21 after insemination and processed for transmission electron microscopy (n = 26) or immunohistochemistry (n = 27) for potential germ-layer characterization (cytokeratin 8 for potential ectoderm; alpha-1-fetoprotein for potential endoderm; and vimentin for potential mesoderm). On day 9, the embryos were devoid of zona pellucida and presented a well-defined inner cell mass (ICM), which was covered by a thin layer of trophoblast cells (the Rauber's layer). Formation of the hypoblast from the inside of the ICM was ongoing. On day 11, the Rauber's layer was focally interrupted and adjacent underlying ICM cells formed tight junctions. The hypoblast, which formed a thin confluent cell layer, was separated from the ICM and the tropho-blast by intercellular matrix. The embryos were ovoid to tubular and displayed a confluent hypoblast on day 14. The epiblast was inserted into the trophoblast epithelium and tight junctions and desmosomes were present between adjacent epiblast cells as well as between peripheral epiblast and trophoblast cells. In some embryos, the epiblast was more or less covered by foldings of trophoblast in the process of forming the amniotic cavity. Cytokeratin 8 was localized to the trophoblast and the hypoblast underlying the epiblast; alpha-1-fetoprotein was localized to most hypoblast cells underlying the trophoblast; and vimentin was localized to most epiblast cells. On day 21, the smallest embryos displayed a primitive streak and formation of the neural groove, whereas the largest embryos presented a neural tube, up to 14 somites and allantois development. These embryos depicted the gradual formation of the endoderm, mesoderm and ectoderm as well as differentiation of paraxial, intermediate and lateral plate mesoderm. Cytokeratin 8 was localized to the trophoblast, the hypoblast and the surface and neural ectoderm; and alpha-1-fetoprotein was localized to the hypoblast, but not the definitive endoderm, the intensity increasing with development. Vimentin was initially localized to some, but not all, cells positioned particularly in the ventral region of the primitive streak, to presumptive definitive endoderm cells inserted into the hypoblast, and to mesoderm. In conclusion, within 2 weeks of hatching, bovine embryos complete formation of the hypoblast and the epiblast, establishment of the amniotic cavity, ingression of epiblast cells for primitive streak formation, involution of cells through the node and the streak for endoderm and mesoderm fomation, neurulation and differentiation of the mesoderm. The recruitment of cells from the epiblast to form the primitive streak as well as the endoderm and mesoderm is associated with expression of the intermediate filament vimentin.


Assuntos
Bovinos/fisiologia , Desenvolvimento Embrionário e Fetal/fisiologia , Gástrula/química , Gástrula/ultraestrutura , Animais , Biomarcadores/análise , Proteínas de Ligação a DNA , Ectoderma/química , Endoderma/química , Feminino , Idade Gestacional , Imuno-Histoquímica/métodos , Inseminação Artificial , Queratinas/análise , Mesoderma/química , Microscopia Eletrônica , Gravidez , Receptores Citoplasmáticos e Nucleares , Superovulação , Transativadores/análise , Fatores de Transcrição , Vimentina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...