Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Oecologia ; 198(4): 889-904, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35325288

RESUMO

Global temperatures are increasing, affecting timing and availability of vegetation along with relationships between plants and their consumers. We examined the effect of population density, herd body condition in the previous year, elevation, plant productivity and phenology, snow, and winter onset on juvenile body mass in 63 semi-domesticated populations of Rangifer tarandus throughout Norway using spatiotemporal generalized additive models (GAMs) and varying coefficient models (VCMs). Optimal climate windows were calculated at both the regional and national level using a novel nonlinear climate window algorithm optimized for prediction. Spatial and temporal variation in effects of population and environmental predictors were considered using a model including covariates decomposed into spatial, temporal, and residual components. The performance of this decomposed model was compared to spatiotemporal GAMs and VCMs. The decomposed model provided the best fit and lowest prediction errors. A positive effect of herd body condition in the previous year explained most of the deviance in calf body mass, followed by a more complex effect of population density. A negative effect of timing of spring and positive effect of winter onset on juvenile body mass suggested that a snow free season was positive for juvenile body mass growth. Our findings suggest early spring onset and later winter permanent snow cover as reinforcers of early-life conditions which support more robust reindeer populations. Our methodological improvements for climate window analyses and effect size measures for decomposed variables provide important contributions to account for, measure, and interpret nonlinear relationships between climate and animal populations at large scales.


Assuntos
Mudança Climática , Rena , Animais , Regiões Árticas , Herbivoria , Plantas , Estações do Ano , Neve
3.
Glob Chang Biol ; 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33231361

RESUMO

Arctic ungulates are experiencing the most rapid climate warming on Earth. While concerns have been raised that more frequent icing events may cause die-offs, and earlier springs may generate a trophic mismatch in phenology, the effects of warming autumns have been largely neglected. We used 25 years of individual-based data from a growing population of wild Svalbard reindeer, to test how warmer autumns enhance population growth. Delayed plant senescence had no effect, but a six-week delay in snow-onset (the observed data range) was estimated to increase late winter body mass by 10%. Because average late winter body mass explains 90% of the variation in population growth rates, such a delay in winter-onset would enable a population growth of r = 0.20, sufficient to counteract all but the most extreme icing events. This study provides novel mechanistic insights into the consequences of climate change for Arctic herbivores, highlighting the positive impact of warming autumns on population viability, offsetting the impacts of harsher winters. Thus, the future for Arctic herbivores facing climate change may be brighter than the prevailing view.

4.
Glob Chang Biol ; 26(5): 2897-2907, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32181966

RESUMO

Determining the importance of physical and biological drivers in shaping biodiversity in diverse ecosystems remains a global challenge. Advancements have been made towards this end in large marine ecosystems with several studies suggesting environmental forcing as the primary driver. However, both empirical and theoretical studies point to additional drivers of changes in diversity involving trophic interactions and, in particular, predation. Moreover, a more integrated but less common approach to the assessment of biodiversity changes involves analyses of spatial ß diversity, whereas most studies to date assess only changes in species richness (α diversity). Recent research has established that when cod, a dominant generalist predator, was overfished and collapsed in a northwest Atlantic food web, spatial ß diversity increased; that is, the spatial structure of the fish assemblage became increasingly heterogeneous. If cod were to recover, would this situation be reversible, given the inherent complexity and non-linear dynamics that typify such systems? A dramatic increase of cod in an ecologically similar large marine ecosystem may provide an answer. Here we show that spatial ß diversity of fish assemblages in the Barents Sea decreased with increasing cod abundance, while decadal scale changes in temperature did not play a significant role. These findings indicate a reversibility of the fish assemblage structure in response to changing levels of an apex predator and highlight the frequently overlooked importance of trophic interactions in determining large-scale biodiversity patterns. As increased cod abundance was largely driven by changes in fisheries management, our study also shows that management policies and practices, particularly those involving apex predators, can have a strong effect in shaping spatial diversity patterns, and one should not restrict the focus to effects of climate change alone.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Biodiversidade , Pesqueiros , Comportamento Predatório
5.
Ecol Appl ; 30(6): e02120, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32159900

RESUMO

Sustainable management of wildlife populations can be aided by building models that both identify current drivers of natural dynamics and provide near-term predictions of future states. We employed a Strategic Foresight Protocol (SFP) involving stakeholders to decide the purpose and structure of a dynamic state-space model for the population dynamics of the Willow Ptarmigan, a popular game species in Norway. Based on local knowledge of stakeholders, it was decided that the model should include food web interactions and climatic drivers to provide explanatory predictions. Modeling confirmed observations from stakeholders that climate change impacts Ptarmigan populations negatively through intensified outbreaks of insect defoliators and later onset of winter. Stakeholders also decided that the model should provide anticipatory predictions. The ability to forecast population density ahead of the harvest season was valued by the stakeholders as it provides the management extra time to consider appropriate harvest regulations and communicate with hunters prior to the hunting season. Overall, exploring potential drivers and predicting short-term future states, facilitate collaborative learning and refined data collection, monitoring designs, and management priorities. Our experience from adapting a SFP to a management target with inherently complex dynamics and drivers of environmental change, is that an open, flexible, and iterative process, rather than a rigid step-wise protocol, facilitates rapid learning, trust, and legitimacy.


Assuntos
Mudança Climática , Noruega , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
6.
J Anim Ecol ; 89(6): 1419-1432, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32108334

RESUMO

Theory predicts that animal populations will be synchronized over large distances by weather and climatic conditions with high spatial synchrony. However, local variation in population responses to weather, and low synchrony in key weather variables or in other ecological processes may reduce the population synchrony. We investigated to what extent temperature and precipitation during different periods of the year synchronized juvenile body mass of moose and reindeer in Norway. We expected high synchronizing effect of weather variables with a high and consistent explanatory power on body mass dynamics across populations, and a weaker synchronizing effect of weather variables whose effect on body mass varied among populations. Juvenile body mass in both species was related to temperature and precipitation during several periods of the year. Temperature had the strongest explanatory power in both species, with a similar effect across all populations. There was higher spatial synchrony in temperature compared to precipitation, and accordingly temperature had the strongest synchronizing effect on juvenile body mass. Moreover, periods with strong explanatory power had stronger synchronizing effect on juvenile body mass in both species. However, weather variables with large variation in the effects on body mass among populations had weak synchronizing effect. The results confirm that weather has a large impact on the spatial structure of population properties but also that spatial heterogeneity, for instance, in environmental change or population density may affect how and to what extent populations are synchronized.


Assuntos
Rena , Tempo (Meteorologia) , Animais , Noruega , Dinâmica Populacional , Estações do Ano , Temperatura
7.
Ecol Evol ; 10(24): 14272-14281, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33391714

RESUMO

Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above-average temperatures since the mid-2000s with divergent bottom temperature trends at subregional scales.Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large-bodied fish predators.The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top-down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.

9.
Environ Monit Assess ; 189(11): 595, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29086027

RESUMO

The importance of long-term environmental monitoring and research for detecting and understanding changes in ecosystems and human impacts on natural systems is widely acknowledged. Over the last decades, a number of critical components for successful long-term monitoring have been identified. One basic component is quality assurance/quality control protocols to ensure consistency and comparability of data. In Norway, the authorities require environmental monitoring of the impacts of the offshore petroleum industry on the Norwegian continental shelf, and in 1996, a large-scale regional environmental monitoring program was established. As a case study, we used a sub-set of data from this monitoring to explore concepts regarding best practices for long-term environmental monitoring. Specifically, we examined data from physical and chemical sediment samples and benthic macroinvertebrate assemblages from 11 stations from six sampling occasions during the period 1996-2011. Despite the established quality assessment and quality control protocols for this monitoring program, we identified several data challenges, such as missing values and outliers, discrepancies in variable and station names, changes in procedures without calibration, and different taxonomic resolution. Furthermore, we show that the use of different laboratories over time makes it difficult to draw conclusions with regard to some of the observed changes. We offer recommendations to facilitate comparison of data over time. We also present a new procedure to handle different taxonomic resolution, so valuable historical data is not discarded. These topics have a broader relevance and application than for our case study.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Meio Ambiente , Noruega , Poluição por Petróleo/análise , Poluição por Petróleo/estatística & dados numéricos , Poluição da Água/análise , Poluição da Água/estatística & dados numéricos
10.
Ecol Appl ; 27(8): 2416-2427, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28871616

RESUMO

Rangifer (caribou/reindeer) management has been suggested to mitigate the temperature-driven transition of Arctic tundra into a shrubland state, yet how this happens is uncertain. Here we study this much focused ecosystem state transition in riparian areas, where palatable willows (Salix) are dominant tall shrubs and highly responsive to climate change. For the state transition to take place, small life stages must become tall and abundant. Therefore we predicted that the performance of small life stages (potential recruits) of the tall shrubs were instrumental to the focal transition, where Rangifer managed at high population density would keep the small-stage shrubs in a "browse trap" independent of summer temperature. We used a large-scale quasi-experimental study design that included real management units that spanned a wide range of Rangifer population densities and summer temperatures in order to assess the relative importance of these two driving variables. Ground surveys provided data on density and height of the small shrub life stages, while the distributional limit (shrubline) of established shrublands (the tall shrub life stage) was derived from aerial photographs. Where Rangifer densities were above a threshold of approximately 5 animals/km2 , we found, in accordance with the expectation of a "browse trap," that the small life stages of shrubs in grasslands were at low height and low abundance. At Rangifer densities below this threshold, the small life stages of shrubs were taller and more abundant indicating Rangifer were no longer in control of the grassland state. For the established shrubland state, we found that the shrubline was at a 100-m lower elevation in the management units where Rangifer had been browsing in summer as opposed to the migratory ranges with no browsing in summer. In both seasonal ranges, the shrubline increased 100 m per 1°C increment in temperature. Our study supports the proposal that Rangifer management within a sustainable range of animal densities can mitigate the much-focused transition from grassland to shrubland in a warming Arctic.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Rena , Tundra , Animais , Regiões Árticas , Noruega , Densidade Demográfica , Temperatura
11.
Glob Chang Biol ; 23(4): 1374-1389, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27426229

RESUMO

The cumulative effects of climate warming on herbivore vital rates and population dynamics are hard to predict, given that the expected effects differ between seasons. In the Arctic, warmer summers enhance plant growth which should lead to heavier and more fertile individuals in the autumn. Conversely, warm spells in winter with rainfall (rain-on-snow) can cause 'icing', restricting access to forage, resulting in starvation, lower survival and fecundity. As body condition is a 'barometer' of energy demands relative to energy intake, we explored the causes and consequences of variation in body mass of wild female Svalbard reindeer (Rangifer tarandus platyrhynchus) from 1994 to 2015, a period of marked climate warming. Late winter (April) body mass explained 88% of the between-year variation in population growth rate, because it strongly influenced reproductive loss, and hence subsequent fecundity (92%), as well as survival (94%) and recruitment (93%). Autumn (October) body mass affected ovulation rates but did not affect fecundity. April body mass showed no long-term trend (coefficient of variation, CV = 8.8%) and was higher following warm autumn (October) weather, reflecting delays in winter onset, but most strongly, and negatively, related to 'rain-on-snow' events. October body mass (CV = 2.5%) increased over the study due to higher plant productivity in the increasingly warm summers. Density-dependent mass change suggested competition for resources in both winter and summer but was less pronounced in recent years, despite an increasing population size. While continued climate warming is expected to increase the carrying capacity of the high Arctic tundra, it is also likely to cause more frequent icing events. Our analyses suggest that these contrasting effects may cause larger seasonal fluctuations in body mass and vital rates. Overall our findings provide an important 'missing' mechanistic link in the current understanding of the population biology of a keystone species in a rapidly warming Arctic.


Assuntos
Herbivoria , Rena , Animais , Regiões Árticas , Índice de Massa Corporal , Feminino , Dinâmica Populacional , Estações do Ano , Svalbard
12.
Integr Comp Biol ; 56(2): 330-42, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27252195

RESUMO

Spatial disease ecology is emerging as a new field that requires the integration of complementary approaches to address how the distribution and movements of hosts and parasites may condition the dynamics of their interactions. In this context, migration, the seasonal movement of animals to different zones of their distribution, is assumed to play a key role in the broad scale circulation of parasites and pathogens. Nevertheless, migration is not the only type of host movement that can influence the spatial ecology, evolution, and epidemiology of infectious diseases. Dispersal, the movement of individuals between the location where they were born or bred to a location where they breed, has attracted attention as another important type of movement for the spatial dynamics of infectious diseases. Host dispersal has notably been identified as a key factor for the evolution of host-parasite interactions as it implies gene flow among local host populations and thus can alter patterns of coevolution with infectious agents across spatial scales. However, not all movements between host populations lead to dispersal per se. One type of host movement that has been neglected, but that may also play a role in parasite spread is prospecting, i.e., movements targeted at selecting and securing new habitat for future breeding. Prospecting movements, which have been studied in detail in certain social species, could result in the dispersal of infectious agents among different host populations without necessarily involving host dispersal. In this article, we outline how these various types of host movements might influence the circulation of infectious disease agents and discuss methodological approaches that could be used to assess their importance. We specifically focus on examples from work on colonial seabirds, ticks, and tick-borne infectious agents. These are convenient biological models because they are strongly spatially structured and involve relatively simple communities of interacting species. Overall, this review emphasizes that explicit consideration of the behavioral and population ecology of hosts and parasites is required to disentangle the relative roles of different types of movement for the spread of infectious diseases.


Assuntos
Doenças dos Animais/transmissão , Migração Animal , Aves , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos/fisiologia , Doenças dos Animais/microbiologia , Doenças dos Animais/parasitologia , Distribuição Animal , Animais , Aves/fisiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Doenças Transmitidas por Carrapatos/transmissão , Carrapatos/microbiologia , Carrapatos/parasitologia
13.
J Anim Ecol ; 84(5): 1242-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25981204

RESUMO

1. Exploitation of living marine resources has resulted in major changes to populations of targeted species and functional groups of large-bodied species in the ocean. However, the effects of overfishing and collapse of large top predators on the broad-scale biodiversity of oceanic ecosystems remain largely unexplored. 2. Populations of the Atlantic cod (Gadus morhua) were overfished and several collapsed in the early 1990s across Atlantic Canada, providing a unique opportunity to study potential ecosystem-level effects of the reduction of a dominant predator on fish biodiversity, and to identify how such effects might interact with other environmental factors, such as changes in climate, over time. 3. We combined causal modelling with model selection and multimodel inference to analyse 41 years of fishery-independent survey data (1970-2010) and quantify ecosystem-level effects of overfishing and climate variation on the biodiversity of fishes across a broad area (172 000 km(2) ) of the Scotian Shelf. 4. We found that alpha and beta diversity increased with decreases in cod occurrence; fish communities were less homogeneous and more variable in systems where cod no longer dominated. These effects were most pronounced in the colder north-eastern parts of the Scotian Shelf. 5. Our results provide strong evidence that intensive harvesting (and collapse) of marine apex predators can have large impacts on biodiversity, with far-reaching consequences for ecological stability across an entire ecosystem.


Assuntos
Biodiversidade , Pesqueiros , Cadeia Alimentar , Gadus morhua/fisiologia , Animais , Oceano Atlântico , Modelos Biológicos , Estações do Ano , Temperatura , Tempo (Meteorologia)
14.
Ecol Evol ; 5(2): 314-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25691959

RESUMO

Weather extremes are one important element of ongoing climate change, but their impacts are poorly understood because they are, by definition, rare events. If the frequency and severity of extreme weather events increase, there is an urgent need to understand and predict the ecological consequences of such events. In this study, we aimed to quantify the effects of snow storms on nest survival in Antarctic petrels and assess whether snow storms are an important driver of annual breeding success and population growth rate. We used detailed data on daily individual nest survival in a year with frequent and heavy snow storms, and long term data on petrel productivity (i.e., number of chicks produced) at the colony level. Our results indicated that snow storms are an important determinant of nest survival and overall productivity. Snow storm events explained 30% of the daily nest survival within the 2011/2012 season and nearly 30% of the interannual variation in colony productivity in period 1985-2014. Snow storms are a key driver of Antarctic petrel breeding success, and potentially population dynamics. We also found state-dependent effects of snow storms and chicks in poor condition were more likely to die during a snow storm than chicks in good condition. This stresses the importance of considering interactions between individual heterogeneity and extreme weather events to understand both individual and population responses to climate change.

15.
Ecol Evol ; 4(7): 1030-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24772280

RESUMO

For long-lived organisms, the fitness value of survival is greater than that of current reproduction. Asymmetric fitness rewards suggest that organisms inhabiting unpredictable environments should adopt a risk-sensitive life history, predicting that it is adaptive to allocate resources to increase their own body reserves at the expense of reproduction. We tested this using data from reindeer populations inhabiting contrasting environments and using winter body mass development as a proxy for the combined effect of winter severity and density dependence. Individuals in good and harsh environments responded similarly: Females who lost large amounts of winter body mass gained more body mass the coming summer compared with females losing less mass during winter. Additionally, females experienced a cost of reproduction: On average, barren females gained more body mass than lactating females. Winter body mass development positively affected both the females' reproductive success and offspring body mass. Finally, we discuss the relevance of our findings with respect to scenarios for future climate change.

16.
J Appl Ecol ; 51(5): 1264-1272, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25558085

RESUMO

A major challenge in biodiversity conservation is to facilitate viable populations of large apex predators in ecosystems where they were recently driven to ecological extinction due to resource conflict with humans.Monetary compensation for losses of livestock due to predation is currently a key instrument to encourage human-carnivore coexistence. However, a lack of quantitative estimates of livestock losses due to predation leads to disagreement over the practice of compensation payments. This disagreement sustains the human-carnivore conflict.The level of depredation on year-round, free-ranging, semi-domestic reindeer by large carnivores in Fennoscandia has been widely debated over several decades. In Norway, the reindeer herders claim that lynx and wolverine cause losses of tens of thousands of animals annually and cause negative population growth in herds. Conversely, previous research has suggested that monetary predator compensation can result in positive population growth in the husbandry, with cascading negative effects of high grazer densities on the biodiversity in tundra ecosystems.We utilized a long-term, large-scale data set to estimate the relative importance of lynx and wolverine predation and density-dependent and climatic food limitation on claims for losses, recruitment and population growth rates in Norwegian reindeer husbandry.Claims of losses increased with increasing predator densities, but with no detectable effect on population growth rates. Density-dependent and climatic effects on claims of losses, recruitment and population growth rates were much stronger than the effects of variation in lynx and wolverine densities.Synthesis and applications. Our analysis provides a quantitative basis for predator compensation and estimation of the costs of reintroducing lynx and wolverine in areas with free-ranging semi-domestic reindeer. We outline a potential path for conflict management which involves adaptive monitoring programmes, open access to data, herder involvement and development of management strategy evaluation (MSE) models to disentangle complex responses including multiple stakeholders and individual harvester decisions.

17.
PLoS One ; 8(2): e56450, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451049

RESUMO

Global warming is expected to cause earlier springs and increased primary productivity in the Arctic. These changes may improve food availability for Arctic herbivores, but may also have negative effects by generating a mismatch between the surge of high quality food in the spring and the timing of reproduction. We analyzed a 10 year dataset of satellite derived measures of vegetation green-up, population densities, calf body masses and female reproductive success in 19 reindeer (Rangifer tarandus) populations in Northern Norway. An early onset of spring and high peak plant productivity had positive effects on calf autumn body masses and female reproductive success. In addition, body masses and reproductive success were both negatively related to population density. The quantity of food available, as determined by the onset of vegetation green-up and plant productivity over the summer were the main drivers of body mass growth and reproductive success. We found no evidence for an effect of the speed of spring green-up. Nor did we detect a negative mismatch between early springs and subsequent recruitment. Effects of global warming on plant productivity and onset of spring is likely to positively affect sub-Arctic reindeer.


Assuntos
Densidade Demográfica , Rena/crescimento & desenvolvimento , Rena/fisiologia , Animais , Aquecimento Global , Plantas , Reprodução/fisiologia
18.
J Anim Ecol ; 81(5): 986-95, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22428953

RESUMO

1. Despite a growing interest in wildlife disease ecology, there is a surprising lack of knowledge about the exposure dynamics of individual animals to naturally circulating infectious agents and the impact of such agents on host life-history traits. 2. The exploration of these questions requires detailed longitudinal data on individual animals that can be captured multiple times during their life but also requires being able to account for several sources of uncertainty, notably the partial observation or recapture of individuals at each sampling occasion. 3. We use a multi-year dataset to (i) assess the potential effect of exposure to the tick-borne agent of Lyme disease, Borrelia burgdorferi sensu lato (Bbsl), on adult apparent survival for one of its natural long-lived hosts, the Black-legged kittiwake (Rissa tridactyla), and (ii) investigate the temporal dynamics of individual immunological status in kittiwakes to infer the rate of new exposure and the persistence of the immune response. Using a multi-event modelling approach, potential uncertainties arising from partial observations were explicitly taken into account. 4. The potential impact of Bbsl on kittiwake survival was also evaluated via an experimental approach: the apparent survival of a group of breeding birds treated with an antibiotic was compared with that of a control group. 5. No impact of exposure to Bbsl was detected on adult survival in kittiwakes, in either observational or experimental data. 6. An annual seroconversion rate (from negative to positive) of 1·5% was estimated, but once an individual became seropositive, it remained so with a probability of 1, suggesting that detectable levels of anti-Bbsl antibodies persist for multiple years. 7. These results, in combination with knowledge on patterns of exposure to the tick vector of Bbsl, provide important information for understanding the spatio-temporal nature of the interaction between this host and several of its parasites. Furthermore, our analyses highlight the utility of capture-mark-recapture approaches handling state uncertainty for disease ecology studies.


Assuntos
Doenças das Aves/microbiologia , Grupo Borrelia Burgdorferi/isolamento & purificação , Charadriiformes , Animais , Doenças das Aves/sangue , Doenças das Aves/epidemiologia , Ixodes , Modelos Biológicos , Noruega/epidemiologia , Estudos Soroepidemiológicos , Testes Sorológicos , Fatores de Tempo , Incerteza
19.
J Anim Ecol ; 81(2): 364-76, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21985598

RESUMO

1. Recent studies have shown that optimal reproductive allocation depends on both climatic conditions and population density. We tested this hypothesis using six years of demographic data from eight reindeer (Rangifer tarandus) populations coupled with data on population abundance and vegetation greenness [measured using the Enhanced Vegetation Index (EVI)]. 2. Female spring body mass positively affected summer body mass gain, and lactating females were unable to compensate for harsh winters as efficiently as barren ones. Female spring body mass was highly sensitive to changes in population abundance and vegetation greenness and less dependent on previous autumn body mass and reproductive status. Lactating females were larger than barren females in the spring. Moreover, female autumn body mass was positively related to female autumn body mass and reproductive success and was not very sensitive to changes in vegetation greenness and population abundance. 3. Offspring autumn body mass was positively related to both maternal spring and autumn body mass, and as predicted from theory, offspring were more sensitive to changes in vegetation greenness and population abundance than adult females. A lagged cost of reproduction was present as larger females who were barren, the previous year produced larger offspring than equally sized females that successfully reproduced the previous year. 4. Reproductive success was negatively related to female autumn body mass and positively related to female spring body mass. Moreover, females who successfully reproduced the previous year experienced the highest reproductive success. The fact that negative density-dependence was only present for females that had successfully reproduced the previous year further support the hypothesis that reproduction is costly. 5. This study shows that female reindeer buffer their reproductive allocation according to expected winter conditions and that their buffering abilities were limited by population abundance and a lagged cost of reproduction and enhanced by vegetation greenness.


Assuntos
Peso Corporal , Rena/fisiologia , Reprodução , Animais , Clima , Ingestão de Alimentos , Ecologia , Feminino , Noruega , Densidade Demográfica , Estações do Ano
20.
Hum Ecol Interdiscip J ; 39(4): 489-508, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21874081

RESUMO

Previously it has been found that an important risk buffering strategy in the Saami reindeer husbandry in Norway is the accumulation of large herds of reindeer as this increases long-term household viability. Nevertheless, few studies have investigated how official policies, such as economic compensation for livestock losses, can influence pastoral strategies. This study investigated the effect of received predation compensation on individual husbandry units' future herd size. The main finding in this study is that predation compensation had a positive effect on husbandry units' future herd size. The effect of predation compensation, however, was nonlinear in some years, indicating that predation compensation had a positive effect on future herd size only up to a certain threshold whereby adding additional predation compensation had little effect on future herd size. More importantly, the effect of predation compensation was positive after controlling for reindeer density, indicating that for a given reindeer density husbandry units receiving more predation compensation performed better (measured as the size of future herds) compared to husbandry units receiving less compensation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...