Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38675421

RESUMO

We highlight the particular aspects of the stable gastric pentadecapeptide BPC 157 pleiotropic beneficial activity (not destroyed in human gastric juice, native and stable in human gastric juice, as a cytoprotection mediator holds a response specifically related to preventing or recovering damage as such) and its possible relations with neurotransmitter activity. We attempt to resolve the shortage of the pleiotropic beneficial effects of BPC 157, given the general standard neurotransmitter criteria, in classic terms. We substitute the lack of direct conclusive evidence (i.e., production within the neuron or present in it as a precursor molecule, released eliciting a response on the receptor on the target cells on neurons and being removed from the site of action once its signaling role is complete). This can be a network of interconnected evidence, previously envisaged in the implementation of the cytoprotection effects, consistent beneficial particular evidence that BPC 157 therapy counteracts dopamine, serotonin, glutamate, GABA, adrenalin/noradrenalin, acetylcholine, and NO-system disturbances. This specifically includes counteraction of those disturbances related to their receptors, both blockade and over-activity, destruction, depletion, tolerance, sensitization, and channel disturbances counteraction. Likewise, BPC 157 activates particular receptors (i.e., VGEF and growth hormone). Furthermore, close BPC 157/NO-system relations with the gasotransmitters crossing the cell membrane and acting directly on molecules inside the cell may envisage particular interactions with receptors on the plasma membrane of their target cells. Finally, there is nerve-muscle relation in various muscle disturbance counteractions, and nerve-nerve relation in various encephalopathies counteraction, which is also exemplified specifically by the BPC 157 therapy application.

2.
Biomedicines ; 10(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35884767

RESUMO

We attempted throughout the NO-system to achieve the particular counteraction of the ketamine-induced resembling "negative-like" schizophrenia symptoms in rats using pentadecapeptide BPC 157, and NO-agents, NG-nitro-L-arginine methylester (L-NAME), and/or L-arginine, triple application. This might be the find out the NO-system organized therapy (i.e., simultaneously implied NO-system blockade (L-NAME) vs. NO-system over-stimulation (L-arginine) vs. NO-system immobilization (L-NAME+L-arginine)). The ketamine regimen (intraperitoneally/kg) included: 3 mg (cognitive dysfunction, novel object recognition test), 30 mg (anxiogenic effect (open field test) and anhedonia (sucrose test)), and 8 mg/3 days (social withdrawal). Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), and BPC 157 (0.01), alone and/or together, given immediately before ketamine (L-NAME, L-arginine, and combination) or given immediately after (BPC 157 and combinations). BPC 157 counteracted ketamine-cognition dysfunction, social withdrawal, and anhedonia, and exerted additional anxiolytic effect. L-NAME (antagonization, social withdrawal) and L-arginine (antagonization, cognitive dysfunction, anhedonia) both included worsening cognitive dysfunction, anhedonia, and anxiogenic effect (L-NAME), social withdrawal, and anxiogenic effect (L-arginine). Thus, ketamine-induced resembling "negative-like" schizophrenia symptoms were "L-NAME non-responsive, L-arginine responsive" (cognition dysfunction), "L-NAME responsive, L-arginine non-responsive" (social withdrawal), "L-NAME responsive, L-arginine responsive, opposite effect" (anhedonia) and "L-NAME responsive, L-arginine responsive, parallel effect" (both anxiogening). In cognition dysfunction, BPC 157 overwhelmed NO-agents effects. The mRNA expression studies in brain tissue evidenced considerable overlapping of gene overexpression in healthy rats treated with ketamine or BPC 157. With the BPC 157 therapy applied immediately after ketamine, the effect on Nos1, Nos2, Plcg1, Prkcg, and Ptgs2 (increased or decreased expression), appeared as a timely specific BPC 157 effect on ketamine-specific targets.

3.
Front Psychiatry ; 12: 741222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34658974

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medications for the treatment of mood disorders. Yet, individual response to SSRIs is highly variable, with only a portion of patients showing the desired therapeutic effect. To better understand the molecular basis underlying individual variability in response to SSRIs, here we comparatively studied behavioral and molecular consequences of chronic treatment with fluoxetine, a widely used SSRI, in two sublines of rats with constitutionally different serotonin (5HT) homeostasis: the high-5HT and low-5HT sublines. Platelet 5HT levels, a recognized indicator of SSRI efficacy, were decreased by fluoxetine treatment in both 5HT-sublines. On the other hand, biologically active plasma 5HT levels were reduced only in high-5HT rats. The anxiolytic effect of fluoxetine was also evident only in high-5HT rats, as supported by spatio-temporal and ethological behavioral measures in the elevated plus maze (EPM) test and exploratory behavior measures in the open field (OF) test. None of the behavioral EPM or OF measures were significantly altered by fluoxetine treatment in low-5HT rats. Unexpectedly, 5HT levels in cerebral cortices tended to be reduced only in low-5HT rats. Moreover, the effects of fluoxetine on cortical expression levels of 5HT-related proteins were also present only in low-5HT rats, with serotonin transporter (5HTT) and serotonin receptor type 1a (Htr1a) being down-regulated, while serotonin receptor type 4 (Htr4) was up-regulated by fluoxetine treatment. The obtained results support a role of individual 5HT tone as an important influencing factor on the biological actions of SSRI antidepressants.

4.
Biomedicines ; 9(7)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356860

RESUMO

BACKGROUND: We investigated the occluded essential vessel tributaries, both arterial and venous, occluded superior mesenteric vein and artery in rats, consequent noxious syndrome, peripherally and centrally. As therapy, we hypothesized the rapidly activated alternative bypassing pathways, arterial and venous, and the stable gastric pentadecapeptide BPC 157 since it rapidly alleviated venous occlusion syndromes. METHODS: Assessments were performed for 30 min (gross recording, venography, ECG, pressure, microscopy, biochemistry, and oxidative stress), including portal hypertension, caval hypertension, aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis, ECG disturbances, MDA-tissue increase, the multiple organs lesions, heart, lung, liver, kidney and gastrointestinal tract, including brain (swelling, and cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus lesions). Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally at 1 min ligation-time. RESULTS: BPC 157 rapidly activated collateral pathways. These collateral loops were the superior mesenteric vein-inferior anterior pancreaticoduodenal vein-superior anterior pancreaticoduodenal vein-pyloric vein-portal vein pathway, an alternative pathway toward inferior caval vein via the united middle colic vein and inferior mesenteric vein through the left colic vein, and the inferior anterior pancreaticoduodenal artery and inferior mesenteric artery. Consequently, BPC 157 counteracted the superior sagittal sinus, portal and caval hypertension, aortal hypotension, progressing venous and arterial thrombosis peripherally and centrally, ECG disturbances attenuated. Markedly, the multiple organs lesions, heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain lesions, and oxidative stress in tissues were attenuated. CONCLUSIONS: BPC 157 therapy rapidly recovered rats, which have complete occlusion of the superior mesenteric vein and artery.

5.
Biomedicines ; 9(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34440233

RESUMO

Background. Gastric pentadecapeptide BPC 157 therapy in rats compensated irremovable occlusion of various vessels and counteracted the consequent multiorgan dysfunction syndromes by activation of the corresponding collateral bypassing loops. Thus, we used BPC 157 therapy against the irremovable occlusion of the end of the superior mesenteric vein. Methods. Assessments, for 30 min (gross recording, venography, ECG, pressure, microscopy, biochemistry, and oxidative stress) include the portal and caval hypertension, aortal hypotension, and centrally, the superior sagittal sinus hypertension, systemic arterial and venous thrombosis, ECG disturbances, MDA-tissue increase, and heart, lung, liver, kidney and gastrointestinal tract, in particular, and brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus) lesions. Rats received BPC 157 medication (10 µg/kg, 10 ng/kg) intraperitoneally at 1 or 15 min ligation time. Results. BPC 157 rapidly activated the superior mesenteric vein-inferior anterior pancreati-coduodenal vein-superior anterior pancreaticoduodenal vein-pyloric vein-portal vein pathway, reestablished superior mesenteric vein and portal vein connection and reestablished blood flow. Simultaneously, toward inferior caval vein, an additional pathway appears via the inferior mesenteric vein united with the middle colic vein, throughout its left colic branch to ascertain alternative bypassing blood flow. Consequently, BPC 157 acts peripherally and centrally, and counteracted the intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, ECG disturbances attenuated, abolished progressing venous and arterial thrombosis. Additionally, BPC 157 counteracted multiorgan dysfunction syndrome, heart, lung, liver, kidney and gastrointestinal tract, and brain lesions, and oxidative stress in tissues. Conclusion. BPC 157 therapy may be specific management also for the superior mesenteric vein injuries.

6.
Biomedicines ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073625

RESUMO

Gastric pentadecapeptide BPC 157 therapy counteracts multiple organ dysfunction syndrome in rats, which have permanent occlusion of the superior mesenteric artery close to the abdominal aorta. Previously, when confronted with major vessel occlusion, its effect would rapidly activate collateral vessel pathways and resolve major venous occlusion syndromes (Pringle maneuver ischemia, reperfusion, Budd-Chiari syndrome) in rats. This would overwhelm superior mesenteric artery permanent occlusion, and result in local, peripheral, and central disturbances. Methods: Assessments, for 30 min (gross recording, angiography, ECG, pressure, microscopy, biochemistry, and oxidative stress), included the portal hypertension, caval hypertension, and aortal hypotension, and centrally, the superior sagittal sinus hypertension; systemic arterial and venous thrombosis; ECG disturbances; MDA-tissue increase; and multiple organ lesions and disturbances, including the heart, lung, liver, kidney, and gastrointestinal tract, in particular, as well as brain (cortex (cerebral, cerebellar), hypothalamus/thalamus, hippocampus). BPC 157 therapy (/kg, abdominal bath) (10 µg, 10 ng) was given for a 1-min ligation time. Results: BPC 157 rapidly recruits collateral vessels (inferior anterior pancreaticoduodenal artery and inferior mesenteric artery) that circumvent occlusion and ascertains blood flow distant from the occlusion in the superior mesenteric artery. Portal and caval hypertension, aortal hypotension, and, centrally, superior sagittal sinus hypertension were attenuated or eliminated, and ECG disturbances markedly mitigated. BPC 157 therapy almost annihilated venous and arterial thrombosis. Multiple organ lesions and disturbances (i.e., heart, lung, liver, and gastrointestinal tract, in particular, as well as brain) were largely attenuated. Conclusions: Rats with superior mesenteric artery occlusion may additionally undergo BPC 157 therapy as full counteraction of vascular occlusion-induced multiple organ dysfunction syndrome.

7.
Behav Brain Res ; 396: 112919, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956773

RESUMO

In the suited rat-models, we focused on the stable pentadecapeptide BPC 157, L-NAME, NOS-inhibitor, and L-arginine, NOS-substrate, relation, the effect on schizophrenia-like symptoms. Medication (mg/kg intraperitoneally) was L-NAME (5), L-arginine (100), BPC 157 (0.01), given alone and/or together, at 5 min before the challenge for the acutely disturbed motor activity (dopamine-indirect/direct agonists (amphetamine (3.0), apomorphine (2.5)), NMDA-receptor non-competitive antagonist (MK-801 (0.2)), or catalepsy, (dopamine-receptor antagonist haloperidol (2.0)). Alternatively, BPC 157 10 µg/kg was given immediately after L-NAME 40 mg/kg intraperitoneally. To induce or prevent sensitization, we used chronic methamphetamine administration, alternating 3 days during the first 3 weeks, and challenge after next 4 weeks, and described medication (L-NAME, L-arginine, BPC 157) at 5 min before the methamphetamine at the second and third week. Given alone, BPC 157 or L-arginine counteracted the amphetamine-, apomorphine-, and MK-801-induced effect, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization. L-NAME did not affect the apomorphine-, and MK-801-induced effects, haloperidol-induced catalepsy and chronic methamphetamine-induced sensitization, but counteracted the acute amphetamine-induced effect. In combinations (L-NAME + L-arginine), as NO-specific counteraction, L-NAME counteracts L-arginine-induced counteractions in the apomorphine-, MK-801-, haloperidol- and methamphetamine-rats, but not in amphetamine-rats. Unlike L-arginine, BPC 157 maintains its counteracting effect in the presence of the NOS-blockade (L-NAME + BPC 157) or NO-system-over-stimulation (L-arginine + BPC 157). Illustrating the BPC 157-L-arginine relationships, BPC 157 restored the antagonization (L-NAME + L-arginine + BPC 157) when it had been abolished by the co-administration of L-NAME with L-arginine (L-NAME + L-arginine). Finally, BPC 157 directly inhibits the L-NAME high dose-induced catalepsy. Further studies would determine precise BPC 157/dopamine/glutamate/NO-system relationships and clinical application.


Assuntos
Anfetamina/farmacologia , Apomorfina/farmacologia , Arginina/farmacologia , Catalepsia , Maleato de Dizocilpina/farmacologia , Dopaminérgicos/farmacologia , Inibidores Enzimáticos/farmacologia , Haloperidol/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase , Fragmentos de Peptídeos/farmacologia , Proteínas/farmacologia , Esquizofrenia , Anfetamina/administração & dosagem , Animais , Apomorfina/administração & dosagem , Arginina/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Catalepsia/fisiopatologia , Modelos Animais de Doenças , Maleato de Dizocilpina/administração & dosagem , Dopaminérgicos/administração & dosagem , Inibidores Enzimáticos/administração & dosagem , Haloperidol/administração & dosagem , Masculino , NG-Nitroarginina Metil Éster/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Óxido Nítrico Sintase/antagonistas & inibidores , Fragmentos de Peptídeos/administração & dosagem , Proteínas/administração & dosagem , Ratos , Ratos Wistar , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia
8.
Curr Pharm Des ; 26(25): 2991-3000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32329684

RESUMO

This review is focused on the healing of fistulas and stable gastric pentadecapeptide BPC 157. Assuming that the healing of the various wounds is essential also for the gastrointestinal fistulas healing, the healing effect on fistulas in rats, consistently noted with the stable gastric pentadecapeptide BPC 157, may raise several interesting possibilities. BPC 157 is originally an anti-ulcer agent, native to and stable in human gastric juice (for more than 24 h). Likely, it is a novel mediator of Robert's cytoprotection maintaining gastrointestinal mucosal integrity. Namely, it is effective in the whole gastrointestinal tract, and heals various wounds (i.e., skin, muscle, tendon, ligament, bone; ulcers in the entire gastrointestinal tract; corneal ulcer); LD1 is not achieved. It is used in ulcerative colitis clinical trials, and now in multiple sclerosis, and addressed in several reviews. Therefore, it is not surprising that BPC 157 has documented consistent healing of the various gastrointestinal fistulas, external (esophagocutaneous, gastrocutaneous, duodenocutaneous, colocutaneous) and internal (colovesical, rectovaginal). Taking fistulas as a pathological connection, this rescue is verified with the beneficial effects in rats with the various gastrointestinal anastomoses, esophagogastric, jejunoileal, colo-colonic, ileoileal, esophagojejunal, esophagoduodenal, and gastrojejunal. This beneficial effect occurs equally when the gastrointestinal anastomoses are impaired with the application of NSAIDs, cysteamine, large bowel resection, as well as concomitant esophageal, gastric, and duodenal lesions and/or ulcerative colitis presentation, short bowel syndrome progression, liver and brain disturbances presentation. Particular aspects of the BPC 157 healing of the fistulas are especially emphasized.


Assuntos
Antiulcerosos , Fístula , Animais , Antiulcerosos/farmacologia , Fragmentos de Peptídeos , Proteínas , Ratos
9.
Gut Liver ; 14(2): 153-167, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31158953

RESUMO

We reviewed again the significance of the stable gastric pentadecapeptide BPC 157 as a likely mediator of Robert's stomach cytoprotection/adaptive cytoprotection and organoprotection and as novel mediator of Selye's stress coping response to reestablish homeostasis. Specific points of BPC 157 therapy and the original concept of Robert's cytoprotection/adaptive cytoprotection/organoprotection are discussed, including the beneficial effects of BPC 157. First, BPC 157 protects stomach cells and maintains gastric integrity against various noxious agents (Robert's killing cell by contact) and is continuously present in the gastric mucosa and gastric juice. Additionally, BPC 157 protects against the adverse effects of alcohol and nonsteroidal anti-inflammatory drugs on the gastric epithelium and other epithelia, that is, skin, liver, pancreas, heart (organoprotection), and brain, thereby suggesting its use in wound healing. Additionally, BPC 157 counteracts gastric endothelial injury that precedes and induces damage to the gastric epithelium and generalizes "gastric endothelial protection" to protection of the endothelium of other vessels (thrombosis, prolonged bleeding, and thrombocytopenia). BPC 157 also has an effect on blood vessels, resulting in vessel recruitment that circumvents vessel occlusion and the development of additional shunting and rapid bypass loops to rapidly reestablish the integrity of blood flow (ischemic/reperfusion colitis, duodenal lesions, cecal perforation, and inferior vena caval occlusion). Lastly, BPC 157 counteracts tumor cachexia, muscle wasting, and increases in pro-inflammatory/procachectic cytokines, such as interleukin-6 and tumor necrosis factor-α, and significantly corrects deranged muscle proliferation and myogenesis through changes in the expression of FoxO3a, p-AKT, p-mTOR, and p-GSK-3ß (mitigating cancer cachexia).


Assuntos
Adaptação Fisiológica/efeitos dos fármacos , Citoproteção/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Substâncias Protetoras/farmacologia , Proteínas/farmacologia , Trato Gastrointestinal/efeitos dos fármacos , Humanos
10.
Pharmacogenomics ; 20(15): 1093-1101, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31588875

RESUMO

Seizure control with antiepileptic drugs (AEDs) as well as susceptibility to adverse drug reactions varies among individuals with epilepsy. This interindividual variability is partly determined by genetic factors. However, genetic testing to predict the efficacy and toxicity of AEDs is limited and genetic variability is, as yet, largely unexplainable. Accordingly, genetic testing can only be advised in a very limited number of cases in clinical routine. Currently, by applying different methodologies, many trials have been undertaken to evaluate cost benefits of preventive pharmacogenetic analysis for patients. There is significant progress in sequencing technologies, and focus is on next-generation sequencing-based methods, like exome and genome sequencing. In this review, an overview of the current scientific knowledge considering the pharmacogenetics of AEDs is given.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Epilepsia/genética , Exoma/genética , Testes Genéticos/métodos , Genoma/genética , Humanos , Farmacogenética/métodos , Testes Farmacogenômicos/métodos , Polimorfismo Genético/genética
11.
Curr Pharm Des ; 24(18): 1972-1989, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998800

RESUMO

Commonly, the angiogenic growth factors signify healing. However, gastrointestinal ulceration is still poorly understood particularly with respect to a general pharmacological/pathophysiological role of various angiogenic growth factors implemented in growth factors wound healing concept. Thereby, we focused on the stable gastric pentadecapeptide BPC 157, a peptide given always alone vs. standard peptidergic angiogenic growth factors (EGF, FGF, VEGF), and numerous carriers. Further, we reviewed how the gastrointestinal tract healing could be generally perceived (i) in terms of angiogenic growth factors, and/or (ii) through the healing of extragastrointestinal tissues healing, such as tendon, ligament, muscle and bone, and vice versa. Respected were the beneficial effects obtained with free peptides or peptides with different carriers; EGF, FGF, VEGF, and BPC 157, their presentation along with injuries, and a healing commonality, providing their implementation in both gastrointestinal ulcer healing and tendon, ligament, muscle and bone healing. Only BPC 157 was consistently effective in all of the models of acute/chronic injury of esophagus, stomach, duodenum and lower gastrointestinal tract, intraperitoneally, per-orally or locally. Unlike bFGF-, EGF-, VEGF-gastrointestinal tract studies demonstrating improved healing, most of the studies on tendon, muscle and bone injuries provide evidence of their (increased) presentation along with the various procedures used to produce beneficial effects, compared to fewer studies in vitro, while in vivo healing has a limited number of studies, commonly limited to local application, diverse healing evidence with diverse carriers and delivery systems. Contrary to this, BPC 157 - using same regimens like in gastrointestinal healing studies - improves tendon, ligament and bone healing, accurately implementing its own angiogenic effect in the healing. Thus, we claim that just BPC 157 represents in practice a pharmacological and pathophysiological role of various peptidergic growth factors.


Assuntos
Antiulcerosos/farmacologia , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Trato Gastrointestinal/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas/farmacologia , Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Cicatrização/efeitos dos fármacos , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo
12.
Curr Pharm Des ; 24(18): 1990-2001, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29879879

RESUMO

Years ago, we revealed a novel cytoprotective mediator, stable gastric pentadecapeptide BPC 157, particular anti-ulcer peptide that heals different organs lesions when given as a therapy, native in human gastric juice while maintaining GI-tract mucosal integrity, already tested in trials (ulcerative colitis and now multiple sclerosis). The stomach cytoprotection is the most fundamental concept, stomach cell protection and endothelium protection are largely elaborated, but so far cell, protection and endothelium protection outside of the stomach were not implemented in the therapy. However, having managed these two points, stomach cell protection and endothelium protection, either one or together, even much more than standard cytoprotective agents do, BPC 157 employed large scale of its beneficial effects seen in various organs. Providing endothelium protection, BPC 157 was shown to prevent formation and reverse established thrombosis in anastomosed abdominal aorta as well as venous thrombosis after inferior caval vein occlusion, and attenuate bleeding prolongation and thrombocytopenia after amputation, without or with anticoagulants, or venous occlusion, and finally counteract effect of L-NAME and/or L- arginine. Now, with BPC 157 application, we reveal the third most important part of the cytoprotection concept: with the stomach cell and endothelium protection to recover mucosal integrity, BPC 157 as prototype cytoprotective agent should also control blood vessel function, depending upon injury, perforated defect or vessel obstruction. After a perforated injury (i.e., stomach), BPC 157 therapy activates blood vessels "running" towards defect. After obstruction (i.e., inferior caval vein), BPC 157 activates vessels "running" towards bypassing defect, collaterals functioning. Reestablished blood flow, and largely reversed injurious course may practically implement the cytoprotection concept.


Assuntos
Antiulcerosos/farmacologia , Endotélio Vascular/efeitos dos fármacos , Trato Gastrointestinal/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Endotélio Vascular/metabolismo , Trato Gastrointestinal/metabolismo , Humanos
13.
World J Gastroenterol ; 24(47): 5366-5378, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30598581

RESUMO

AIM: To investigate whether duodenal lesions induced by major venous occlusions can be attenuated by BPC 157 regardless nitric oxide (NO) system involvement. METHODS: Male Wistar rats underwent superior anterior pancreaticoduodenal vein (SAPDV)-ligation and were treated with a bath at the ligated SAPDV site (BPC 157 10 µg, 10 ng/kg per 1 mL bath/rat; L-NAME 5 mg/kg per 1 mL bath/rat; L-arginine 100 mg/kg per 1 mL bath/rat, alone and/or together; or BPC 157 10 µg/kg instilled into the rat stomach, at 1 min ligation-time). We recorded the vessel presentation (filled/appearance or emptied/disappearance) between the 5 arcade vessels arising from the SAPDV on the ventral duodenum side, the inferior anterior pancreaticoduodenal vein (IAPDV) and superior mesenteric vein (SMV) as bypassing vascular pathway to document the duodenal lesions presentation; increased NO- and oxidative stress [malondialdehyde (MDA)]-levels in duodenum. RESULTS: Unlike the severe course in the SAPDV-ligated controls, after BPC 157 application, the rats exhibited strong attenuation of the mucosal lesions and serosal congestion, improved vessel presentation, increased interconnections, increased branching by more than 60% from the initial value, the IAPDV and SMV were not congested. Interestingly, after 5 min and 30 min of L-NAME and L-arginine treatment alone, decreased mucosal and serosal duodenal lesions were observed; their effect was worsened at 24 h, and no effect on the collateral vessels and branching was seen. Together, L-NAME+L-arginine antagonized each other's response, and thus, there was an NO-related effect. With BPC 157, all SAPDV-ligated rats receiving L-NAME and/or L-arginine appeared similar to the rats treated with BPC 157 alone. Also, BPC 157 in SAPDV-ligated rats normalized levels of NO and MDA, two oxidative stress markers, in duodenal tissues. CONCLUSION: BPC 157, rapidly bypassing occlusion, rescued the original duodenal flow through IAPDV to SMV flow, an effect related to the NO system and reduction of free radical formation.


Assuntos
Colite Isquêmica/tratamento farmacológico , Circulação Colateral/efeitos dos fármacos , Duodeno/patologia , Substâncias Protetoras/farmacologia , Trombose Venosa/complicações , Animais , Arginina/farmacologia , Arginina/uso terapêutico , Colite Isquêmica/etiologia , Modelos Animais de Doenças , Duodeno/irrigação sanguínea , Duodeno/efeitos dos fármacos , Humanos , Masculino , NG-Nitroarginina Metil Éster/farmacologia , NG-Nitroarginina Metil Éster/uso terapêutico , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/uso terapêutico , Substâncias Protetoras/uso terapêutico , Proteínas/farmacologia , Proteínas/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Wistar , Resultado do Tratamento , Veias/efeitos dos fármacos
14.
Acta Neurochir Suppl ; 122: 279-82, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27165921

RESUMO

BACKGROUND: The correlation between cerebrospinal fluid (CSF) and intraocular pressure (IOP) is still unclear. We compared CSF and IOP measured by the same invasive technique using a new experimental model in rabbits during changes of body position. METHODS: Pressure changes were recorded in the lateral ventricle (LV), the cortical subarachnoid space (CSS), and the anterior ocular chamber of anesthetized rabbits (n = 12). Animals and measuring instruments were both fixed on a board at an adequate hydrostatic level. RESULTS: In a horizontal position, control IOP (15.1 ± 1.6 cmH2O) and CSF pressure in the LV (12.4 ± 0.6 cmH2O) and CSS (12.2 ± 0.9 cmH2O) were similar during the 60-min period. When changing the body position from horizontal to vertical (upright), CSF pressures decreased drastically (LV = -5.5 ± 2.6 cmH2O and CSS = -7.7 ± 2.3 cmH2O), while the IOP decreased moderately (IOP = 13.3 ± 0.5 cmH2O). CONCLUSION: Change in body position from horizontal to vertical causes drastic changes in CSF pressure and moderate changes in IOP. Thus, IOP is not reflected by the CSF pressure. In an upright position, the values of CSF pressure were equal to the hydrostatic distance between measuring points and the foramen magnum, which suggests that CSF pressure inside the cranium depends on its anatomical and biophysical features, and not on CSF secretion and absorption.


Assuntos
Pressão Intracraniana/fisiologia , Pressão Intraocular/fisiologia , Postura/fisiologia , Animais , Câmara Anterior , Feminino , Hidrodinâmica , Ventrículos Laterais , Masculino , Coelhos , Espaço Subaracnóideo
15.
Coll Antropol ; 35 Suppl 1: 51-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21648311

RESUMO

It is unknown which factors determine the changes in cerebrospinal fluid (CSF) pressure inside the craniospinal system during the changes of the body position. To test this, we have developed a new model of the CSF system, which by its biophysical characteristics and dimensions imitates the CSF system in cats. The results obtained on a model were compared to those in animals observed during changes of body position. A new model was constructed from two parts with different physical characteristics. The "cranial" part is developed from a plastic tube with unchangeable volume, while the "spinal" part is made of a rubber baloon, with modulus of elasticity similar to that of animal spinal dura. In upright position, in the "cranial" part of the model the negative pressure appears without any measurable changes in the fluid volume, while in "spinal" part the fluid pressure is positive. All of the observed changes are in accordance to the law of the fluid mechanics. Alterations of the CSF pressure in cats during the changes of the body position are not significantly different compared to those observed on our new model. This suggests that the CSF pressure changes are related to the fluid mechanics, and do not depend on CSF secretion and circulation. It seems that in all body positions the cranial volume of blood and CSF remains constant, which enables a good blood brain perfusion.


Assuntos
Pressão do Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/fisiologia , Modelos Biológicos , Animais , Gatos , Módulo de Elasticidade , Desenho de Equipamento , Postura/fisiologia , Reologia
16.
Coll Antropol ; 35 Suppl 1: 93-100, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21648317

RESUMO

An experimental crush injury to the sciatic nerve, with a crush force of 49.2 N (pressure p=1.98x10(8) Pa), was inflicted in 30 male rats (Wistar). A control group (sham), with the same number of rats, was also operated upon exactly as the experimental group but without the crush injury. We tested the sensory and motor recovery of the sciatic nerve with Hargreaves method, using an apparatus from Ugo Basile, Italy. Testing was continued for both legs of each rat, injured and uninjured, starting preoperatively (0 day), and then 1, 7, 14, 21, and 28 days postoperatively. The same experiment was run simultaneously with the sham group. The Plantar test showed recovery of the sensory and motor function of the sciatic nerve, though not complete recovery, by 28 days. An immunohistochemical experiment was run in parallel with the plantar test on L3-L6 segments of the spinal cord from where the sciatic nerve extends. We used antibodies for Myelin-associated glycoprotein (MAG), and gangliosides GD1a and GT1b on the aforesaid part of the spinal cord. The immunohistochemical methods showed changes in sensory and motor axons in the spinal cord segment L3-L6 which suggest correspondence with the results of the Plantar test, in terms of recovery of the sensory and motor function after injury of the sciatic nerve. The immunohistochemical results also show ipsilateral and contralateral changes following injury. Results of the plantar test are suggestive that the rat shows compensation for an injury in its contralateral leg.


Assuntos
Imuno-Histoquímica , Medição da Dor , Nervo Isquiático/lesões , Traumatismos do Sistema Nervoso/metabolismo , Animais , Comportamento Animal , Masculino , Desempenho Psicomotor/fisiologia , Ratos , Ratos Wistar , Recuperação de Função Fisiológica/fisiologia , Nervo Isquiático/metabolismo , Nervo Isquiático/patologia
17.
Coll Antropol ; 32 Suppl 1: 93-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18405065

RESUMO

The hypothesis that repeated measurements during 4 subsequent days affect withdrawal latencies in Hargreaves test was investigated. Paw withdrawal latencies to radiant heat were determined in the control, tramadol or saline group of male Wistar rats. The control group (N=10) had no treatment. Tramadol group (N=7) and saline group (N=7) received one daily intraperitoneal injection of tramadol (15 mg/kg) or saline (0.9% NaCl), respectively. A significant decline in withdrawal latencies was observed in the control group on the day 2 to day 4, when compared to day 1 (p < 0.05 Bonferroni test). In the saline and tramadol groups, latencies remained stable from day 1 to day 4. During the entire testing period withdrawal latencies were 27-50% longer in tramadol group (p < 0.05 ANOVA) compared with the saline group. When compared to the control group, the effect of tramadol, was noted from the second to forth day (p < 0.01 Bonferroni test), but not on the first day. Finally, a tendency to decrement in withdrawal latencies existed on day 1 in the saline group compared with control group, but this difference does not reach significance. We conclude that one day of training affect withdrawal latencies in the Hargreaves test.


Assuntos
Analgésicos Opioides/farmacologia , Dor/tratamento farmacológico , Tempo de Reação/efeitos dos fármacos , Tramadol/farmacologia , Analgésicos Opioides/uso terapêutico , Análise de Variância , Animais , Temperatura Alta/efeitos adversos , Masculino , Dor/etiologia , Ratos , Ratos Wistar , Tramadol/uso terapêutico
18.
Somatosens Mot Res ; 24(4): 213-9, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18097994

RESUMO

The aim of this paper is to show the activity cage as a viable method for tracking functional nerve recovery. The activity cage measures spontaneous coordinate activity, meaning movement in either the horizontal or vertical plane, of experimental animals within a specified amount of time. This uses a minimum of researcher time conducting functional testing to determine functional recovery of the nerve. Using microsurgical forceps, a crush injury was inflicted unilaterally, on the left side, upon the 4-month-old C3H mice creating a very high degree of pressure for 6 s upon the exposed sciatic nerve. The locomotion function of the mice was evaluated using the activity cage preoperatively, 1, 7, 14, 21, and 28 days after the surgical procedure. We found that using the activity cage functional recovery occurred by 14 days after nerve crush injury. It was also shown that, coinciding with functional recovery, immunohistochemistry changes for GD1a and nNOS appeared at the level of L4, where the sciatic nerve joins the spinal column. GD1a and nNOS have both been linked to regenerative processes in mammalian nervous systems.


Assuntos
Abrigo para Animais , Atividade Motora , Compressão Nervosa , Recuperação de Função Fisiológica , Nervo Isquiático/lesões , Animais , Pesquisa Comportamental/métodos , Biomarcadores/metabolismo , Seguimentos , Lateralidade Funcional , Gangliosídeos/metabolismo , Imuno-Histoquímica , Vértebras Lombares , Masculino , Camundongos , Camundongos Endogâmicos C3H , Regeneração Nervosa/fisiologia , Óxido Nítrico Sintase Tipo I/metabolismo , Nervo Isquiático/metabolismo , Nervo Isquiático/fisiopatologia , Medula Espinal/metabolismo
19.
Coll Antropol ; 27 Suppl 1: 175-82, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12955907

RESUMO

In vitro effects of dihydroergotoxine, dihydroergosine, dihydroergotamine, alpha-dihydroergocriptine (ergot alkaloids), diazepam, methyl-beta-Carboline-3-carboxilate (beta-CCM), flumazenil (benzodiazepines), gamma-amino butyric acid (GABA) and thiopental (barbiturate) were studied on mouse brain (cerebrum minus cerebral cortex) benzodiazepine binding sites labeled with 3H-flunitrazepam. Specific, high affinity (affinity constant, Kd = 57.7 8.6 nM) binding sites for 3H-flunitrazepam on mouse brain membranes were identified. All benzodiazepine drugs inhibited 3H-flunitrazepam binding with nanomolar potencies. In contrast to benzodiazepines, all ergot drugs, GABA and thiopental produced an enhancement of 3H-flunitrazepam binding to its binding site at the GABAA receptor of the mouse brain. The rank order of potency was: neurotransmitter (GABA) > dihydroergotoxine > thiopental > alpha-dihydroergocriptine > dihydroergosine > dihydroergotamine. The results suggest that dihydrogenated ergot derivatives do not bind to the brain benzodiazepine binding sites labeled with 3H-flunitrazepam. However, an enhancement of 3H-flunitrazepam binding by all ergot drugs tested, clearly identifies an allosteric interaction with the benzodiazepine binding sites of GABAA receptors.


Assuntos
Ansiolíticos/metabolismo , Encéfalo/metabolismo , Alcaloides de Claviceps/farmacologia , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinas , Feminino , Camundongos , Camundongos Endogâmicos CBA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...