Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Res ; 50(10): 1116-1130, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27383194

RESUMO

Long-wavelength solar UV radiation is implicated in photodamage to the human eye. The human lens contains multiple tryptophan-derived compounds that have significant absorbance bands in the UVA region (λ 315-400 nm) that act as efficient physical filters for these wavelengths. The concentrations of many of these UV filter compounds decrease with increase in age, resulting in diminished protection, increased oxidative damage and the accumulation of modified proteins implicated in nuclear cataract formation. This damage may arise via the formation of α,ß-unsaturated carbonyls from the UV filter compounds, adduction to lens proteins and subsequent action as photosensitizers, and/or via the reactions of redox-active transition metal ions that accumulate in aged human lenses. The latter may promote the oxidation of free, or protein-bound, o-aminophenols, such as the UV filter compounds 3-hydroxykynurenine (3OHKyn) and 3-hydroxyanthranilic acid (3OHAA). It is shown here that Cu(II), and to a lesser extent Fe(III), enhance oxidation of free 3OHKyn, 3OHAA and 3OHKyn bound to specific amino acids and lens proteins, with this resulting in increased cross-linking of lens proteins. These data indicate that elevated levels of transition metal ions in aging lenses can enhance the loss of protective UV filter compounds, and contribute to the formation of high-molecular-mass dysfunctional crystallin proteins in a light-independent manner. These reactions may contribute to the formation of lens cataracts in humans.


Assuntos
Catarata/etiologia , Cristalinas/metabolismo , Cristalino/metabolismo , Triptofano/química , Humanos
2.
Arch Biochem Biophys ; 459(2): 151-8, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17306209

RESUMO

Oxidation of polyunsaturated fatty acids by thiyl radicals derived from GSH or Cys is believed to be responsible for some of the biological damage resulting from lipid oxidation under oxidative stress. However, this has not been demonstrated in complex biological systems. In this study, we measured the formation of lipid hydroperoxides in liposomes exposed to radicals generated by gamma radiation from GSH, GSSG, GSMe, Cys and Met. In the absence of proteins, the radicals oxidized the liposome lipids. In the presence of proteins, the thiyl radicals failed to react with the liposomes, even though the protein radicals efficiently oxidized the S-compounds. It appears that the thiyl and other S-radicals were effectively scavenged by the protein before initiating lipid oxidation. The results suggest that membrane lipid oxidation in vivo by thiyl radicals is unlikely to be a significant event.


Assuntos
Radicais Livres/química , Bicamadas Lipídicas/química , Peroxidação de Lipídeos , Lipossomos/química , Proteínas/química , Sulfamerazina/química , Membranas Artificiais , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...