Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 20(3): 94, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30690674

RESUMO

This study aims to investigate the implications of loaded formulation mass on aerosol performance using a reservoir novel dry powder inhaler containing a custom dosing cup to deliver carrier-based formulation to the lungs. A 3D printed dosing cup with volume size of 133.04 mm3 was manufactured to allow for the progressive loading of different carrier formulation masses of 1% beclomethasone dipropionate BDP (w/w) formulation (10 to 60 mg, with increments of 10 mg), in a novel customizable DPI device. Scanning electron micrographs were used to investigate BDP detachment from carrier particles post-aerosolisation and particle deposition on the USP induction port. The subsequent aerosol performance analysis was performed using the next generation impactor (NGI). Incrementally increasing the loading mass to 60 mg led to decreases in BDP detachment from carrier particles, resulting in significant decreases in aerosol performance. Increases in loading dose mass led to progressively decreased detachment of BDP from the carrier and the overall aerosol performance in comparison to the initial mass of 10 mg. These results are likely to be due to a decrease in void volume within the dosing cup with increased loading mass leading to altered airflow, decreased impaction forces and the possibility of a significant quantity of large carrier particles introducing a 'sweeping' effect on the inhaler inner surface. This study has shown that despite the decreased BDP detachment from the carrier and decreased aerosol performance, the dose delivered to the lung still increased due to the higher loaded dose.


Assuntos
Aerossóis/administração & dosagem , Antiasmáticos/administração & dosagem , Beclometasona/administração & dosagem , Inaladores de Pó Seco/instrumentação , Glucocorticoides/administração & dosagem , Pós , Administração por Inalação , Relação Dose-Resposta a Droga , Tamanho da Partícula
2.
J Pharm Sci ; 108(2): 949-959, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30312722

RESUMO

This study investigated how varying the dosing cup size of a novel reservoir dry powder inhaler (DPI) affects the detachment of a micronized active pharmaceutical ingredient from larger carrier particles, and the aerosol performance of a DPI carrier formulation. Three different-sized dosing cups were designed: 3D printed with cup volumes of 16.26 mm3, 55.99 mm3, and 133.04 mm3, and tested with five different carrier type formulations with beclomethasone dipropionate (BDP) concentrations between 1% and 30% (w/w). The morphology of the BDP attached to the carrier was investigated using scanning electron microscopy and the aerosol performance using the Next Generation Impactor. Increasing the volume of the dosing cup led to a reduction of BDP deposition in the Next Generation Impactor preseparator, and an increase in BDP detachment from the carrier was observed, leading to increased aerosol performance. The decreased amount of BDP attached to carrier after aerosolization was attributed to the increased dosing cup void volume. This may enable greater particle-particle and particle-wall collisions, with greater BDP detachment from the carrier and deagglomeration of smaller agglomerates. The dosing cup volume was observed to have significant influence on particle dispersion and the overall aerosol performance of a DPI.


Assuntos
Aerossóis/administração & dosagem , Antiasmáticos/administração & dosagem , Beclometasona/administração & dosagem , Inaladores de Pó Seco , Administração por Inalação , Desenho de Equipamento , Humanos , Tamanho da Partícula
3.
Int J Pharm ; 544(1): 141-152, 2018 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-29649519

RESUMO

PURPOSE: This study was performed to investigate how increasing the active pharmaceutical ingredient (API) content within a formulation affects the dispersion of particles and the aerosol performance efficiency of a carrier based dry powder inhalable (DPI) formulation, using a custom dry powder inhaler (DPI) development rig. METHODS: Five formulations with varying concentrations of API beclomethasone dipropionate (BDP) between 1% and 30% (w/w) were formulated as a multi-component carrier system containing coarse lactose and fine lactose with magnesium stearate. The morphology of the formulation and each component were investigated using scanning electron micrographs while the particle size was measured by laser diffraction. The aerosol performance, in terms of aerodynamic diameter, was assessed using the British pharmacopeia Apparatus E cascade impactor (Next generation impactor). Chemical analysis of the API was observed by high performance liquid chromatography (HPLC). RESULTS: Increasing the concentration of BDP in the blend resulted in increasing numbers and size of individual agglomerates and densely packed BDP multi-layers on the surface of the lactose carrier. BDP present within the multi-layer did not disperse as individual primary particles but as dense agglomerates, which led to a decrease in aerosol performance and increased percentage of BDP deposition within the Apparatus E induction port and pre-separator. CONCLUSION: As the BDP concentration in the blends increases, aerosol performance of the formulation decreases, in an inversely proportional manner. Concurrently, the percentage of API deposition in the induction port and pre-separator could also be linked to the amount of micronized particles (BDP and Micronized composite carrier) present in the formulation. The effect of such dose increase on the behaviour of aerosol dispersion was investigated to gain greater insight in the development and optimisation of higher dosed carrier-based formulations.


Assuntos
Portadores de Fármacos/química , Inaladores de Pó Seco , Aerossóis , Antiasmáticos/química , Anti-Inflamatórios/química , Beclometasona/química , Composição de Medicamentos , Excipientes/química , Glucocorticoides/química , Lactose/química , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Ácidos Esteáricos/química
4.
Int J Pharm ; 533(1): 225-235, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-28941830

RESUMO

The breath-actuated mechanism (BAM) is a mechanical unit included in NEXThaler® with the role of delaying the emission of the drug until the inhalation flow rate of the patient is sufficiently high to detach the drug particles from their carriers. The main objective of this work was to analyse the effect of the presence of BAM on the size distribution of the emitted drug and its airway deposition efficiency and distribution. Study of the hygroscopic growth of the emitted drug particles and its effect on the deposition was another goal of this study. Size distributions of Foster® NEXThaler® drug particles emitted by dry powder inhalers with and without BAM have been measured by a Next Generation Impactor. Three characteristic inhalation profiles of asthmatic patients (low, moderate and high flow rates) were used for both experimental and modelling purposes. Particle hygroscopic growth was determined by a new method, where experimental measurements are combined with simulations. Upper airway and lung deposition fractions were computed assuming 5s and 10s breath-hold times. By the inclusion of BAM the fine particle fraction of the steroid component increased from 24 to 30% to 47-51%, while that of bronchodilator from 25-34% to 52-55%. The predicted upper airway steroid and bronchodilator doses decreased from about 60% to 35-40% due to BAM. At the same time, predicted lung doses increased from about 20%-35% (steroid) and from 22% to 38% (bronchodilator) for the moderate flow profile and from about 25% to 40% (steroid) and from 29% to 47% (bronchodilator) for the high inhalation flow profile. Although BDP and FF upper airway doses decreased by a factor of about two when BAM was present, lung doses of both components were about the same in the BAM and no-BAM configurations at the weakest flow profile. However, lung dose increased by 2-3% even for this profile when hygroscopic growth was taken into account. In conclusion, the NEXThaler® BAM mechanism is a unique feature enabling high emitted fine particle fraction and enhanced drug delivery to the lungs.


Assuntos
Antiasmáticos/administração & dosagem , Asma/tratamento farmacológico , Inaladores de Pó Seco , Modelos Biológicos , Corticosteroides/administração & dosagem , Corticosteroides/química , Antiasmáticos/química , Asma/metabolismo , Beclometasona/administração & dosagem , Beclometasona/química , Broncodilatadores/administração & dosagem , Broncodilatadores/química , Fumarato de Formoterol/administração & dosagem , Fumarato de Formoterol/química , Humanos , Pulmão/metabolismo , Tamanho da Partícula , Respiração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...