Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645943

RESUMO

Efforts to identify anti-cancer therapeutics and understand tumor-immune interactions are built with in vitro models that do not match the microenvironmental characteristics of human tissues. Using in vitro models which mimic the physical properties of healthy or cancerous tissues and a physiologically relevant culture medium, we demonstrate that the chemical and physical properties of the microenvironment regulate the composition and topology of the glycocalyx. Remarkably, we find that cancer and age-related changes in the physical properties of the microenvironment are sufficient to adjust immune surveillance via the topology of the glycocalyx, a previously unknown phenomenon observable only with a physiologically relevant culture medium.

2.
J Virol ; 97(6): e0049323, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37255439

RESUMO

Influenza defective interfering (DI) viruses have long been considered promising antiviral candidates because of their ability to interfere with replication-competent viruses and induce antiviral immunity. However, the mechanisms underlying DI-mediated antiviral immunity have not been extensively explored. Here, we demonstrated the interferon (IFN)-independent protection conferred by the influenza DI virus against homologous virus infection in mice deficient in type I and III IFN signaling. We identified unique host signatures responding to DI coinfection by integrating transcriptional and posttranscriptional regulatory data. DI-treated mice exhibited reduced viral transcription, less intense inflammatory and innate immune responses, and primed multiciliated cell differentiation in their lungs at an early stage of infection, even in the absence of type I or III IFNs. This increased multiciliogenesis could also be detected at the protein level via the immunofluorescence staining of lung tissue from DI-treated mice. Overall, our study provides mechanistic insight into the protection mediated by DIs, implying a unifying theme involving inflammation and multiciliogenesis in maintaining respiratory homeostasis and revealing their IFN-independent antiviral activity. IMPORTANCE During replication, the influenza virus generates genetically defective viruses. These are found in natural infections as part of the virus population within the infected host. Some versions of these defective viruses are thought to have protective effects through their interference with replication-competent viruses and induction of antiviral immunity. To better determine the mechanisms underlying the protective effects of these defective interfering (DI) viruses, we tested a DI that we previously identified in vitro with mice. Mice that were infected with a mix of wild-type influenza and DI viruses had less intense inflammatory and innate immune responses than did mice that were infected with the wild-type virus only, even when type I or III interferons, which are cytokines that play a prominent role in defending the respiratory epithelial barrier, were absent. More interestingly, the DI-infected mice had primed multiciliated cell differentiation in their lungs, indicating the potential promotion of epithelial repair by DIs.


Assuntos
Diferenciação Celular , Vírus Defeituosos Interferentes , Infecções por Orthomyxoviridae , Animais , Camundongos , Interferons , Replicação Viral , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Orthomyxoviridae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...