Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116416, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986717

RESUMO

The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor signaling potentiates ethanol (EtOH)-induced hepatotoxicity in male mice, however, how PXR signaling modulates EtOH-induced hepatotoxicity in female mice is unknown. Wild type (WT) and Pxr-null mice received 5 % EtOH-containing diets or paired-fed control diets for 8 weeks followed by assessment of liver injury, EtOH elimination rates, histology, and gene and protein expression changes; microarray and bioinformatic analyses were also employed to identify PXR targets in chronic EtOH-induced hepatotoxicity. In WT females, EtOH ingestion significantly increased serum ethanol and alanine aminotransferase (ALT) levels, hepatic Pxr mRNA, constitutive androstane receptor (CAR) activation, Cyp2b10 mRNA and protein, oxidative stress, and endoplasmic stress (phospho-elF2α) and pro-apoptotic (Bax) protein expression. Unexpectedly, EtOH-fed female Pxr-null mice displayed increased EtOH elimination and elevated levels of hepatic acetaldehyde detoxifying aldehyde dehydrogenase 1a1 (Aldh1a1) mRNA and protein, EtOH-metabolizing alcohol dehydrogenase 1 (ADH1), and lipid suppressing microsomal triglyceride transport protein (MTP) protein, aldo-keto reductase 1b7 (Akr1b7) and Cyp2a5 mRNA, but suppressed CYP2B10 protein levels, with evidence of protection against chronic EtOH-induced oxidative stress and hepatotoxicity. While liver injury was not different between the two WT sexes, female sex may suppress EtOH-induced macrovesicular steatosis in the liver. Several genes and pathways important in retinol and steroid hormone biosynthesis, chemical carcinogenesis, and arachidonic acid metabolism were upregulated by EtOH in a PXR-dependent manner in both sexes. Together, these data establish that female Pxr-null mice are resistant to chronic EtOH-induced hepatotoxicity and unravel the PXR-dependent and -independent mechanisms that contribute to EtOH-induced hepatotoxicity.

2.
Biomed Pharmacother ; 173: 116341, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38428309

RESUMO

Obesity is a significant risk factor for several chronic diseases. However, pre-menopausal females are protected against high-fat diet (HFD)-induced obesity and its adverse effects. The pregnane X receptor (PXR, NR1I2), a xenobiotic-sensing nuclear receptor, promotes short-term obesity-associated liver disease only in male mice but not in females. Therefore, the current study investigated the metabolic and pathophysiological effects of a long-term 52-week HFD in female wild-type (WT) and PXR-KO mice and characterized the PXR-dependent molecular pathways involved. After 52 weeks of HFD ingestion, the body and liver weights and several markers of hepatotoxicity were significantly higher in WT mice than in their PXR-KO counterparts. The HFD-induced liver injury in WT female mice was also associated with upregulation of the hepatic mRNA levels of peroxisome proliferator-activated receptor gamma (Pparg), its target genes, fat-specific protein 27 (Fsp27), and the liver-specific Fsp27b involved in lipid accumulation, apoptosis, and inflammation. Notably, PXR-KO mice displayed elevated hepatic Cyp2a5 (anti-obesity gene), aldo-keto reductase 1b7 (Akr1b7), glutathione-S-transferase M3 (Gstm3) (antioxidant gene), and AMP-activated protein kinase (AMPK) levels, contributing to protection against long-term HFD-induced obesity and inflammation. RNA sequencing analysis revealed a general blunting of the transcriptomic response to HFD in PXR-KO compared to WT mice. Pathway enrichment analysis demonstrated enrichment by HFD for several pathways, including oxidative stress and redox pathway, cholesterol biosynthesis, and glycolysis/gluconeogenesis in WT but not PXR-KO mice. In conclusion, this study provides new insights into the molecular mechanisms by which PXR deficiency protects against long-term HFD-induced severe obesity and its adverse effects in female mice.


Assuntos
Dieta Hiperlipídica , Fígado , Masculino , Feminino , Camundongos , Animais , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos Endogâmicos C57BL , Aumento de Peso , Obesidade/metabolismo , Inflamação/metabolismo , Camundongos Knockout
3.
Biofactors ; 50(3): 572-591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38183321

RESUMO

Although obesity and subsequent liver injury are increasingly prevalent in women, female mouse models have generally shown resistance to high-fat diet (HFD)-induced obesity. We evaluated control and HFD-fed male and female FVB/N mice, a strain well-suited to transgenic analyses, for phenotypic, histological, and molecular markers related to control of glucose, lipids, and inflammation in serum, liver, and perigonadal white adipose tissues. Unlike many mouse models, HFD-fed FVB/N females gained more perigonadal and mesenteric fat mass and overall body weight than their male counterparts, with increased hepatic expression of lipogenic PPARγ target genes (Cd36, Fsp27, and Fsp27ß), oxidative stress genes and protein (Nqo1 and CYP2E1), inflammatory gene (Mip-2), and the pro-fibrotic gene Pai-1, along with increases in malondialdehyde and serum ALT levels. Further, inherent to females (independently of HFD), hepatic antioxidant heme oxygenase-1 (HMOX1, HO-1) protein levels were reduced compared to their male counterparts. In contrast, males may have been relatively protected from HFD-induced oxidative stress and liver injury by elevated mRNA and protein levels of hepatic antioxidants BHMT and Gpx2, increased fatty acid oxidation genes in liver and adipocytes (Pparδ), despite disorganized and inflamed adipocytes. Thus, female FVB/N mice offer a valuable preclinical, genetically malleable model that recapitulates many of the features of diet-induced obesity and liver damage observed in human females.


Assuntos
Dieta Hiperlipídica , Heme Oxigenase-1 , Inflamação , Fígado , Obesidade , Estresse Oxidativo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Camundongos , Masculino , Fígado/metabolismo , Fígado/patologia , Inflamação/metabolismo , Inflamação/patologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , PPAR gama/metabolismo , PPAR gama/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana , Proteínas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...