Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 482(4): 1289-1295, 2017 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-27993680

RESUMO

Human Protein tyrosine kinase 6 (PTK6)(EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed five-fold or more in human breast tumors and breast cancer cell lines but its expression being low or completely absent from normal mammary gland. There is a recent interest in targeting PTK6-positive breast cancer by developing small molecule inhibitor against PTK6. Novel imidazo[1,2-a]pyrazin-8-amines (IPA) derivative compounds and FDA approved drug, Dasatinib are reported to inhibit PTK6 kinase activity with IC50 in nM range. To understand binding mode of these compounds and key interactions that drive the potency against PTK6, one of the IPA compounds and Dasatinib were chosen to study through X-ray crystallography. The recombinant PTK6 kinase domain was purified and co-crystallized at room temperature by the sitting-drop vapor diffusion method, collected X-ray diffraction data at in-house and resolved co-crystal structure of PTK6-KD with Dasatinib at 2.24 Å and with IPA compound at 1.70 Å resolution. Both these structures are in DFG-in & αC-helix-out conformation with unambiguous electron density for Dasatinib or IPA compound bound at the ATP-binding pocket. Relative difference in potency between Dasatinib and IPA compound is delineated through the additional interactions derived from the occupation of additional pocket by Dasatinib at gatekeeper area. Refined crystallographic coordinates for the kinase domain of PTK6 in complex with IPA compound and Dasatinib have been submitted to Protein Data Bank under the accession number 5DA3 and 5H2U respectively.


Assuntos
Aminas/química , Neoplasias da Mama/tratamento farmacológico , Proteínas de Neoplasias/química , Proteínas Tirosina Quinases/química , Trifosfato de Adenosina/química , Neoplasias da Mama/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Dasatinibe/química , Difusão , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Imidazóis/química , Concentração Inibidora 50 , Ligação Proteica , Domínios Proteicos , Mapeamento de Interação de Proteínas
2.
Biochem Biophys Res Commun ; 478(2): 637-42, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27480927

RESUMO

Human Protein tyrosine kinase 6 (PTK6) (EC:2.7.10.2), also known as the breast tumor kinase (BRK), is an intracellular non-receptor Src-related tyrosine kinase expressed in a majority of human breast tumors and breast cancer cell lines, but its expression is low or completely absent in normal mammary glands. In the recent past, several studies have suggested that PTK6 is a potential therapeutic target in cancer. To understand its structural and functional properties, the PTK6 kinase domain (PTK6-KD) gene was cloned, overexpressed in a baculo-insect cell system, purified and crystallized at room temperature. X-ray diffraction data to 2.33 Å resolution was collected on a single PTK6-KD crystal, which belonged to the triclinic space group P1. The Matthews coefficient calculation suggested the presence of four protein molecules per asymmetric unit, with a solvent content of ∼50%.The structure has been solved by molecular replacement and crystal structure data submitted to the protein data bank under the accession number 5D7V. This is the first report of apo PTK6-KD structure crystallized in DFG-in and αC-helix-out conformation.


Assuntos
Mutação , Proteínas de Neoplasias/química , Proteínas Tirosina Quinases/química , Sequência de Aminoácidos , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Ensaios Enzimáticos , Expressão Gênica , Humanos , Cinética , Modelos Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Células Sf9 , Spodoptera , Relação Estrutura-Atividade
3.
Indian J Endocrinol Metab ; 17(Suppl 1): S157-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24251142

RESUMO

Pulse methylprednisolone therapy is the recommended therapy for moderate to severe and active ophthalmopathy, but high dose pulse methylprednisolone therapy is marred by the chances of fulminant hepatic failure and the high cost of therapy. Dexamethasone pulse therapy can be considered as an alternative to pulse methylprednisolone therapy. A prospective randomized control trial was carried out in 21 patients comparing pulse dexamethasone therapy versus pulse methyprednisolone therapy in Graves's ophthalmopathy. This study proved that pulse dexamethasone therapy is a cheaper and equally effective therapy for Graves's ophthalmopathy and the cost of therapy is reduced to at least 1/8(th) s. Furthermore, dexa had a better effect on reduction of exophthalmos. The dreaded complication of fulminant hepatic failure, associated with high dose of methylprednisolone, is not seen with dexa therapy.

4.
Indian J Endocrinol Metab ; 17(Suppl 1): S283-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24251187

RESUMO

Mauriac syndrome is a rare syndrome associated with type 1 diabetes (T1DM) in children presenting with growth retardation, hepatomegaly, and cushingoid features. Recently, there has been re-emergence of this syndrome, especially with the use of premix insulin. A 15-year old type 1 diabetic boy, who was on premix insulin with erratic blood glucose, was referred to us for evaluation of short stature. He had significant short stature, hepatomegaly, and cushingoid features. His growth hormone (GH) stimulation was normal, and so was the overnight dexamethasone suppression test, based on which the diagnosis of Mauriac syndrome was reported. He was made to switch over to basal bolus regime, and was advised to follow-up for 6 months. He had reduction in hepatomegaly and a height gain of 3 cms.

5.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 9): 1717-25, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23999295

RESUMO

XIAP, a member of the inhibitor of apoptosis family of proteins, is a critical regulator of apoptosis. Inhibition of the BIR domain-caspase interaction is a promising approach towards treating cancer. Previous work has been directed towards inhibiting the BIR3-caspase-9 interaction, which blocks the intrinsic apoptotic pathway; selectively inhibiting the BIR2-caspase-3 interaction would also block the extrinsic pathway. The BIR2 domain of XIAP has successfully been crystallized; peptides and small-molecule inhibitors can be soaked into these crystals, which diffract to high resolution. Here, the BIR2 apo crystal structure and the structures of five BIR2-tetrapeptide complexes are described. The structural flexibility observed on comparing these structures, along with a comparison with XIAP BIR3, affords an understanding of the structural elements that drive selectivity between BIR2 and BIR3 and which can be used to design BIR2-selective inhibitors.


Assuntos
Caspase 3/química , Caspase 3/metabolismo , Inibidores de Caspase/química , Proteínas Inibidoras de Apoptose/química , Nucleopoliedrovírus/química , Proteínas Virais/química , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/química , Sequência de Aminoácidos , Apoproteínas/química , Apoproteínas/genética , Apoptose/genética , Cristalografia por Raios X , Humanos , Proteínas Inibidoras de Apoptose/genética , Dados de Sequência Molecular , Família Multigênica/genética , Nucleopoliedrovírus/genética , Oligopeptídeos/química , Oligopeptídeos/genética , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , Proteínas Virais/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
6.
Biochemistry ; 47(20): 5608-15, 2008 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-18442260

RESUMO

Imidazolonepropionase (HutI) (imidazolone-5-propanote hydrolase, EC 3.5.2.7) is a member of the amidohydrolase superfamily and catalyzes the conversion of imidazolone-5-propanoate to N-formimino-L-glutamate in the histidine degradation pathway. We have determined the three-dimensional crystal structures of HutI from Agrobacterium tumefaciens (At-HutI) and an environmental sample from the Sargasso Sea Ocean Going Survey (Es-HutI) bound to the product [ N-formimino-L-glutamate (NIG)] and an inhibitor [3-(2,5-dioxoimidazolidin-4-yl)propionic acid (DIP)], respectively. In both structures, the active site is contained within each monomer, and its organization displays the landmark feature of the amidohydrolase superfamily, showing a metal ligand (iron), four histidines, and one aspartic acid. A catalytic mechanism involving His265 is proposed on the basis of the inhibitor-bound structure. This mechanism is applicable to all HutI forms.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/classificação , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Histidina/química , Histidina/metabolismo , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
7.
BMC Struct Biol ; 7: 62, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17908300

RESUMO

BACKGROUND: Pfam is a comprehensive collection of protein domains and families, with a range of well-established information including genome annotation. Pfam has two large series of functionally uncharacterized families, known as Domains of Unknown Function (DUFs) and Uncharacterized Protein Families (UPFs). RESULTS: Crystal structures of two proteins from Deinococcus radiodurans and Streptomyces coelicolor belonging to Pfam protein family DUF178 (ID: PF02621) have been determined using Selenium-Single-wavelength Anomalous Dispersion (Se-SAD). Based on the structure, we have identified the putative function for this family of protein. CONCLUSION: Unexpectedly, we found that DUF178 Pfam is remarkably similar to Pfam family DUF191 suggesting that the sequence-based classification alone may not be sufficient to classify proteins into Pfam families.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/classificação , Deinococcus/química , Streptomyces coelicolor/química , Homologia Estrutural de Proteína , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ligantes , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos
9.
Protein Sci ; 14(12): 3089-100, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16322583

RESUMO

Ketol-acid reductoisomerase (KARI; EC 1.1.1.86) catalyzes two steps in the biosynthesis of branched-chain amino acids. Amino acid sequence comparisons across species reveal that there are two types of this enzyme: a short form (Class I) found in fungi and most bacteria, and a long form (Class II) typical of plants. Crystal structures of each have been reported previously. However, some bacteria such as Escherichia coli possess a long form, where the amino acid sequence differs appreciably from that found in plants. Here, we report the crystal structure of the E. coli enzyme at 2.6 A resolution, the first three-dimensional structure of any bacterial Class II KARI. The enzyme consists of two domains, one with mixed alpha/beta structure, which is similar to that found in other pyridine nucleotide-dependent dehydrogenases. The second domain is mainly alpha-helical and shows strong evidence of internal duplication. Comparison of the active sites between KARI of E. coli, Pseudomonas aeruginosa, and spinach shows that most residues occupy conserved positions in the active site. E. coli KARI was crystallized as a tetramer, the likely biologically active unit. This contrasts with P. aeruginosa KARI, which forms a dodecamer, and spinach KARI, a dimer. In the E. coli KARI tetramer, a novel subunit-to-subunit interacting surface is formed by a symmetrical pair of bulbous protrusions.


Assuntos
Escherichia coli/enzimologia , Evolução Molecular , Cetol-Ácido Redutoisomerase/química , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Cátions Bivalentes/química , Cristalografia por Raios X , Dimerização , Escherichia coli/genética , Cetol-Ácido Redutoisomerase/classificação , Cetol-Ácido Redutoisomerase/genética , Cetol-Ácido Redutoisomerase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Pseudomonas aeruginosa/enzimologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Spinacia oleracea/enzimologia , Homologia Estrutural de Proteína
10.
FEBS J ; 272(2): 593-602, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15654896

RESUMO

Ketol-acid reductoisomerase (EC 1.1.1.86) is involved in the biosynthesis of the branched-chain amino acids. It is a bifunctional enzyme that catalyzes two quite different reactions at a common active site; an isomerization consisting of an alkyl migration, followed by an NADPH-dependent reduction of a 2-ketoacid. The 2-ketoacid formed by the alkyl migration is not released. Using the pure recombinant Escherichia coli enzyme, we show that the isomerization reaction has a highly unfavourable equilibrium constant. The reductase activity is shown to be relatively nonspecific and is capable of utilizing a variety of 2-ketoacids. The active site of the enzyme contains eight conserved polar amino acids and we have mutated each of these in order to dissect their contributions to the isomerase and reductase activities. Several mutations result in loss of the isomerase activity with retention of reductase activity. However, none of the 17 mutants examined have the isomerase activity only. We suggest a reason for this, involving direct reduction of a transition state formed during the isomerization, which is necessitated by the unfavourable equilibrium position of the isomerization. Our mechanism explains why the two activities must occur in a single active site without release of a 2-ketoacid and provides a rationale for the requirement for NADPH by the isomerase.


Assuntos
Oxirredutases do Álcool/metabolismo , Oxirredutases do Álcool/química , Sítios de Ligação , Catálise , Cetol-Ácido Redutoisomerase , Cinética , Magnésio/metabolismo , Mutagênese Sítio-Dirigida , NADP/metabolismo
11.
Acta Crystallogr D Biol Crystallogr ; 60(Pt 8): 1432-4, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15272168

RESUMO

Ketol-acid reductoisomerase (EC 1.1.1.86) catalyses the second reaction in the biosynthesis of branched-chain amino acids. The reaction involves an Mg2+ -dependent alkyl migration followed by an NADPH-dependent reduction of the 2-keto group. Here, the crystallization of the Escherichia coli enzyme is reported. A form with a C-terminal hexahistidine tag could be crystallized under 18 different conditions in the absence of NADPH or Mg2+ and a further six crystallization conditions were identified with one or both ligands. With the hexahistidine tag on the N-terminus, 20 crystallization conditions were found, some of which required the presence of NADPH, NADP+, Mg2+ or a combination of ligands. Finally, the selenomethionine-substituted enzyme with the N-terminal tag crystallized under 15 conditions. Thus, the enzyme is remarkably easy to crystallize. Most of the crystals diffract poorly but several data sets were collected at better than 3.2 A resolution; attempts to phase them are currently in progress.


Assuntos
Oxirredutases do Álcool/química , Escherichia coli/enzimologia , Oxirredutases do Álcool/biossíntese , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/isolamento & purificação , Cristalização , Cristalografia por Raios X , Escherichia coli/genética , Expressão Gênica , Cetol-Ácido Redutoisomerase
12.
BMC Biotechnol ; 4: 2, 2004 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-15070414

RESUMO

BACKGROUND: Site-directed mutagenesis is an efficient method to alter the structure and function of genes. Here we report a rapid and efficient megaprimer-based polymerase chain reaction (PCR) mutagenesis strategy that by-passes any intermediate purification of DNA between two rounds of PCR. RESULTS: The strategy relies on the use of a limiting concentration of one of the flanking primers (reverse or forward) along with the normal concentration of mutagenic primer, plus a prolonged final extension cycle in the first PCR amplification step. This first round of PCR generates a megaprimer that is used subsequently in the second round of PCR, along with the second flanking primer, but without the intermediate purification of the megaprimer. The strategy has been used successfully with four different plasmids to generate various mutants. CONCLUSION: This strategy provides a very rapid, inexpensive and efficient approach to perform site-directed mutagenesis. The strategy provides an alternative to conventional megaprimer based site-directed mutagenesis, which is based on an intermediate gel purification step. The strategy gives a high frequency of mutagenesis.


Assuntos
Primers do DNA , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase/métodos , Oxirredutases do Álcool/genética , DNA/isolamento & purificação , Eletroforese em Gel de Ágar , Cetol-Ácido Redutoisomerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...