Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Cell Res ; 336(1): 23-32, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26004871

RESUMO

BACKGROUND: Acquired resistance to cisplatin treatment is a caveat when treating patients with non-small cell lung cancer (NSCLC) and malignant pleural mesothelioma (MPM). Ceramide increases in response to chemotherapy, leading to proliferation arrest and apoptosis. However, a tumour stress activation of glucosylceramide synthase (GCS) follows to eliminate ceramide by formation of glycosphingolipids (GSLs) such as globotriaosylceramide (Gb3), the functional receptor of verotoxin-1. Ceramide elimination enhances cell proliferation and apoptosis blockade, thus stimulating tumor progression. GSLs transactivate multidrug resistance 1/P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) expression which further prevents ceramide accumulation and stimulates drug efflux. We investigated the expression of Gb3, MDR1 and MRP1 in NSCLC and MPM cells with acquired cisplatin resistance, and if GCS activity or MDR1 pump inhibitors would reduce their expression and reverse cisplatin-resistance. METHODS: Cell surface expression of Gb3, MDR1 and MRP1 and intracellular expression of MDR1 and MRP1 was analyzed by flow cytometry and confocal microscopy on P31 MPM and H1299 NSCLC cells and subline cells with acquired cisplatin resistance. The effect of GCS inhibitor PPMP and MDR1 pump inhibitor cyclosporin A for 72h on expression and cisplatin cytotoxicity was tested. RESULTS: The cisplatin-resistant cells expressed increased cell surface Gb3. Cell surface Gb3 expression of resistant cells was annihilated by PPMP whereas cyclosporin A decreased Gb3 and MDR1 expression in H1299 cells. No decrease of MDR1 by PPMP was noted in using flow cytometry, whereas a decrease of MDR1 in H1299 and H1299res was indicated with confocal microscopy. No certain co-localization of Gb3 and MDR1 was noted. PPMP, but not cyclosporin A, potentiated cisplatin cytotoxicity in all cells. CONCLUSIONS: Cell surface Gb3 expression is a likely tumour biomarker for acquired cisplatin resistance of NSCLC and MPM cells. Tumour cell resistance to MDR1 inhibitors of cell surface MDR1 and Gb3 could explain the aggressiveness of NSCLC and MPM. Therapy with GCS activity inhibitors or toxin targeting of the Gb3 receptor may substantially reduce acquired cisplatin drug resistance of NSCLC and MPM cells.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ciclosporina/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Glucosiltransferases/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Triexosilceramidas/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Ceramidas/metabolismo , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imunossupressores/farmacologia , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Meperidina/análogos & derivados , Meperidina/farmacologia , Mesotelioma/enzimologia , Mesotelioma/patologia , Mesotelioma Maligno , Microscopia Confocal , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Células Tumorais Cultivadas
2.
Cell Physiol Biochem ; 35(2): 647-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25613309

RESUMO

BACKGROUND: A novel link between oncogenic KRAS signalling and WT1 was recently identified. We sought to investigate the role of WT1 and KRAS in proliferation and apoptosis. METHODS: KRAS mutations and WT1 (cMyc) expression were detected using Sanger sequencing and real-time PCR in 77 patients with non-small cell lung cancer (NSCLC). Overexpression and knockdown of WT1 were generated with plasmid and siRNA via transient transfection technology in H1299 and H1568 cells. MTT assay for detection of cell proliferation, and TUNEL assay and proteomic profiler assay for apoptosis evaluation were carried out. Dual luciferase reporter assay and ChIP-PCR were performed to validate the effect of WT1 on the cMyc promoter. RESULTS: KRAS mutations showed a negative impact on overall survival (OS). High expressions of WT1 and cMyc were associated with poor OS in KRAS mutant subgroup. The potential mechanisms that WT1 promotes proliferation and impedes apoptosis through affecting multiple apoptosis-related regulators in KRAS mutant NSCLC cells were identified. WT1 could activate cMyc promoter directly in KRAS mutant cells. CONCLUSION: The results suggest that WT1 and c-MYC expression is important for survival in KRAS mutant tumors as opposed to KRAS wild-type tumors. For treatment of KRAS mutant NSCLC, targeting WT1 and cMyc may provide alternative therapeutic strategies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas/genética , Proteínas WT1/genética , Proteínas ras/genética , Idoso , Idoso de 80 Anos ou mais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Análise de Sobrevida , Proteínas WT1/metabolismo
3.
Toxins (Basel) ; 2(10): 2467-77, 2010 10.
Artigo em Inglês | MEDLINE | ID: mdl-22069561

RESUMO

A major problem with anti-cancer drug treatment is the development of acquired multidrug resistance (MDR) of the tumor cells. Verotoxin-1 (VT-1) exerts its cytotoxicity by targeting the globotriaosylceramide membrane receptor (Gb3), a glycolipid associated with multidrug resistance. Gb3 is overexpressed in many human tumors and tumor cell lines with inherent or acquired MDR. Gb3 is co-expressed and interplays with the membrane efflux transporter P-gp encoded by the MDR1 gene. P-gp could act as a lipid flippase and stimulate Gb3 induction when tumor cells are exposed to cancer chemotherapy. Recent work has shown that apoptosis and inherent or acquired multidrug resistance in Gb3-expressing tumors could be affected by VT-1 holotoxin, a sub-toxic concentration of the holotoxin concomitant with chemotherapy or its Gb3-binding B-subunit coupled to cytotoxic or immunomodulatory drug, as well as chemical manipulation of Gb3 expression. The interplay between Gb3 and P-gp thus gives a possible physiological approach to augment the chemotherapeutic effect in multidrug resistant tumors.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Glicoesfingolipídeos/metabolismo , Toxina Shiga I/farmacologia , Animais , Humanos , Neoplasias/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...