Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Insect Physiol ; 133: 104291, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34364848

RESUMO

Positive genetic covariance between male sexual display traits and fertilizing capacity can arise through different mechanisms and has important implications for sexual trait evolution. Evidence for such genetic covariance is rare, and when it has been found, specific physiological traits underlying variation in fertilization success linked to trait expression have not been identified. A previous study of correlated responses to bidirectional artificial selection on the male sex comb, a secondary sexual trait, in Drosophila bipectinata Duda documented a positive genetic correlation between sexual trait size and competitive fertilization success, and found that transcript levels of multiple seminal fluid proteins (SFPs) were significantly increased in the large sex comb (high) genetic lines. These results suggest that changes in SFP activity may be a causal factor underlying the increased fertilizing capacity of high line males. Here, we tested for correlated responses to this selection in a suite of additional reproductive traits, measured in the context of variation in male age and exposure to rivals. Whereas several traits including sperm length, number and viability, and accessory gland size, increased with age, only sperm viability was influenced by selection treatment, but in complex fashion. Sperm viability of high line males surpassed that of their smaller-combed counterparts when they had been housed with rivals and were 5-6 days old or older. Interestingly, this interaction effect was evident for sperm sampled from the female seminal receptacle, but not from the male seminal vesicles (where sperm have yet to be combined with accessory gland products), consistent with the differential SFP activity between the lines previously found. Our results suggest that differences in sperm quality (as viability) may be a contributing factor to the positive genetic correlation between sexual trait size and competitive fertilization capacity in D. bipectinata.


Assuntos
Drosophila/fisiologia , Seleção Genética/fisiologia , Animais , Drosophila/genética , Ejaculação , Feminino , Masculino
2.
Curr Biol ; 31(7): 1547-1554.e5, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33567290

RESUMO

Postcopulatory sexual selection results from variation in competitive fertilization success among males and comprises powerful evolutionary forces that operate after the onset of mating.1,2 Theoretical advances in the field of sexual selection addressing the buildup and coevolutionary consequences of genetic coupling3-5 motivate the hypothesis that indirect postcopulatory sexual selection may promote evolution of male secondary sexual traits-those traits traditionally ascribed to mate choice and male fighting.6,7 A crucial prediction of this hypothesis is genetic covariance between trait expression and competitive fertilization success, which has been predicted to arise, for example, when traits subject to pre- and postcopulatory sexual selection are under positive correlational selection.8 We imposed bidirectional artificial selection on male ornament (sex comb) size in Drosophila bipectinata and demonstrated increased competitive fertilization success as a correlated evolutionary response to increasing ornament size. Transcriptional analyses revealed that levels of specific seminal fluid proteins repeatedly shifted in response to this selection, suggesting that properties of the ejaculate, rather than the enlarged sex comb itself, contributed fertilizing capacity. We used ultraprecise laser surgery to reduce ornament size of high-line males and found that their fertilizing superiority persisted despite the size reduction, reinforcing the transcriptional results. The data support the existence of positive genetic covariance between a male secondary sexual trait and competitive fertilization success, and suggest the possibility that indirect postcopulatory sexual selection may, under certain conditions, magnify net selection on ornamental trait expression.


Assuntos
Drosophila , Fertilização , Caracteres Sexuais , Animais , Drosophila/genética , Drosophila/fisiologia , Fertilização/genética , Masculino , Fenótipo , Reprodução , Seleção Genética , Comportamento Sexual Animal , Espermatozoides
3.
BMC Evol Biol ; 13: 43, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23410054

RESUMO

BACKGROUND: Post-mating interactions between the reproductive traits and gametes of mating individuals and among their genes within zygotes are invariably complex, providing multiple opportunities for reproduction to go awry. These interactions have the potential to act as barriers to gene flow between species, and may be important in the process of speciation. There are multiple post-mating barriers to interbreeding between the hybridising field crickets Gryllus bimaculatus and G. campestris. Female G. bimaculatus preferentially store sperm from conspecific males when mated to both conspecific and heterospecific partners. Additionally, conspecific males sire an even greater proportion of offspring than would be predicted from their sperm's representation in the spermatheca. The nature of these post-sperm-storage barriers to hybridisation are unknown. We use a fluorescent staining technique to determine whether barriers occur prior to, or during embryo development. RESULTS: We show that eggs laid by G. bimaculatus females mated to G. campestris males are less likely to begin embryogenesis than eggs from conspecific mating pairs. Of the eggs that are successfully fertilised and start to develop, those from heterospecific mating pairs are more likely to arrest early, prior to blastoderm formation. We find evidence for bimodal variation among egg clutches in the number of developing embryos that subsequently arrest, indicating that there is genetic variation for incompatibility between mating individuals. In contrast to the pattern of early embryonic mortality, those hybrids reaching advanced stages of embryogenesis have survival rates equal to that of embryos from conspecific mating pairs. CONCLUSIONS: Post-sperm-storage barriers to hybridisation show evidence of genetic polymorphism. They are sufficiently large, that if the species interbreed where they are sympatric, these barriers could play a role in the maintenance of reproductive isolation between them. The number of eggs that fail to develop represents a substantial cost of hybridization to G. bimaculatus females, and this cost could reinforce the evolution of barriers occurring earlier in the reproductive process.


Assuntos
Especiação Genética , Gryllidae/classificação , Gryllidae/genética , Hibridização Genética , Animais , Desenvolvimento Embrionário , Feminino , Fertilização , Gryllidae/crescimento & desenvolvimento , Gryllidae/fisiologia , Masculino , Óvulo/fisiologia , Isolamento Reprodutivo , Espermatozoides/fisiologia
4.
Mol Ecol ; 22(6): 1640-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23294288

RESUMO

Mechanisms that prevent different species from interbreeding are fundamental to the maintenance of biodiversity. Barriers to interspecific matings, such as failure to recognize a potential mate, are often relatively easy to identify. Those occurring after mating, such as differences in the how successful sperm are in competition for fertilisations, are cryptic and have the potential to create selection on females to mate multiply as a defence against maladaptive hybridization. Cryptic advantages to conspecific sperm may be very widespread and have been identified based on the observations of higher paternity of conspecifics in several species. However, a relationship between the fate of sperm from two species within the female and paternity has never been demonstrated. We use competitive microsatellite PCR to show that in two hybridising cricket species, Gryllus bimaculatus and G. campestris, sequential cryptic reproductive barriers are present. In competition with heterospecifics, more sperm from conspecific males is stored by females. Additionally, sperm from conspecific males has a higher fertilisation probability. This reveals that conspecific sperm precedence can occur through processes fundamentally under the control of females, providing avenues for females to evolve multiple mating as a defence against hybridization, with the counterintuitive outcome that promiscuity reinforces isolation and may promote speciation.


Assuntos
Gryllidae/fisiologia , Hibridização Genética , Reprodução/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Fertilização , Gryllidae/genética , Masculino , Repetições de Microssatélites , Especificidade da Espécie , Espermatozoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...