Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 2(7): 3966-3976, 2017 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457700

RESUMO

Several nickel(II) complexes of cyclams bearing aryl groups on the carbon backbone were prepared and evaluated for their propensity to catalyze the electrochemical reduction of CO2 to CO and/or H+ to H2, representing the first catalytic analysis to be performed on an aryl-cyclam metal complex. Cyclic voltammetry (CV) revealed the attenuation of catalytic activity when the aryl group bears the strong electron-withdrawing trifluoromethyl substituent, whereas the phenyl, p-tolyl, and aryl-free derivatives displayed a range of catalytic activities. The gaseous-product distribution for the active complexes was determined by means of controlled-potential electrolysis (CPE) and revealed that the phenyl derivative is the most active as well as the most selective for CO2 reduction over proton reduction. Stark differences in the activity of the complexes studied are rationalized through comparison of their X-ray structures, absorption spectra, and CPE profiles. Further CV studies on the phenyl derivative were undertaken to provide a kinetic insight.

2.
Inorg Chem ; 55(17): 8736-43, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27529498

RESUMO

Presented here is the chemistry of Cr(III) alkynyl complexes based on the rac-HMC and meso-HMC ligands (HMC = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Thus far, two pairs of cis/trans-[Cr(rac/meso-HMC)(C2R)2]Cl (R = Ph, C2H/C2SiMe3) complexes have been synthesized from reactions between cis/trans-[Cr(rac/meso-HMC)Cl2]Cl and LiC2R. These complexes were characterized using single crystal X-ray diffraction, UV-vis spectroscopy, FT-IR spectroscopy, and fluorimetry. Single crystal X-ray diffraction studies revealed that these complexes adopt a pseudo-octahedral geometry. The electronic spectra of both the cis- and trans-[Cr(rac/meso-HMC)(C4R')2]Cl (R' = H or SiMe3) complexes exhibit d-d bands with pronounced vibronic progression associated with the asymmetric stretch of the Cr-bound C≡C bonds. All of these complexes are phosphorescent and show structured emissions originating from the ligand field excited states.

3.
Inorg Chem ; 54(20): 10058-64, 2015 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-26414398

RESUMO

Novel [Ni(TMC)C≡CY](+)-type compounds 1-4 [TMC = 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane; Y = SiMe3 (1), Si(i)Pr3 (2), Ph (3), and C2H (4)] have been synthesized and characterized. Single-crystal X-ray diffraction studies revealed that these compounds adopt a distorted square-pyramidal geometry, with the acetylide ligand occupying the apical position and a RSRS isomer for the TMC ligand. The room temperature magnetic properties of 1-4 are consistent with an S = 1 ground state, as corroborated by CASSCF and density functional theory calculations, which indicate that the singly occupied molecular orbitals are d(z(2)) and d(x(2)-y(2)).

4.
J Am Chem Soc ; 136(34): 12174-83, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25116468

RESUMO

Reported herein is a series of Ru2(Xap)4 capped polyyn-diyl compounds, where Xap is either 2-anilinopyridinate (ap) or its aniline substituted derivatives. Symmetric [Ru2(Xap)4](µ-C4k)[Ru2(Xap)4] (compounds 4ka (X = 3-isobutoxy) and 4kc (X = 3,5-dimethoxy) with k = 2, 3, 4, and 5) was obtained from the Glaser coupling reaction of Ru2(Xap)4(C2kH). Unsymmetric [Ru2(Xap)4](µ-C(4k+2))[Ru2(ap)4] (compounds 4k+2b with k = 2, 3, and 4) were prepared from the Glaser coupling reaction between Ru2(Xap)4(C(2k+2)H) and Ru2(ap)4(C2kH). X-ray diffraction study of compound 12c revealed both the sigmoidal topology of the polyyn-diyl bridge and the fine structural detail about the Ru2 cores. Cyclic and differential pulse voltammetric (CV and DPV) measurements and spectroelectrochemical studies revealed that (i) the reduced monoanions [Ru2-C2m-Ru2](-1) (m = 4-8) belong to the Robin-Day class II mixed valent ions and (ii) the electronic coupling between Ru2 termini depends on the length of the polyyn-diyl bridge with an attenuation constant (γ) between 0.12 and 0.15 Å(-1). In addition, spin-unrestricted DFT calculations provide insight about the nature of orbitals that mediate the long distance electronic coupling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...