Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977616

RESUMO

Temperature is a key environmental factor restricting seed germination. Rose (Rosa canina L.) seeds are characterized by physical/physiological dormancy, which is broken during warm, followed by cold stratification. Exposing pretreated seeds to 20 °C resulted in the induction of secondary dormancy. The aim of this study was to identify and functionally characterize the proteins associated with dormancy control of rose seeds. Proteins from primary dormant, after warm and cold stratification (nondormant), and secondary dormant seeds were analyzed using 2-D electrophoresis. Proteins that varied in abundance were identified by mass spectrometry. Results showed that cold stratifications affected the variability of the highest number of spots, and there were more common spots with secondary dormancy than with warm stratification. The increase of mitochondrial proteins and actin during dormancy breaking suggests changes in cell functioning and seed preparation to germination. Secondary dormant seeds were characterized by low levels of legumin, metabolic enzymes, and actin, suggesting the consumption of storage materials, a decrease in metabolic activity, and cell elongation. Breaking the dormancy of rose seeds increased the abundance of cellular and metabolic proteins that promote germination. Induction of secondary dormancy caused a decrease in these proteins and germination arrest.


Assuntos
Temperatura Baixa , Dormência de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Rosa/metabolismo , Sementes/metabolismo , Espectrometria de Massas , Proteômica
2.
Tree Physiol ; 38(4): 617-629, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29121348

RESUMO

Poor storability of recalcitrant seeds is due to their inability to tolerate low moisture content. Understanding the processes underlying their recalcitrance is a prerequisite to developing a maintenance strategy and prolonging their lifespan. Multiple studies have investigated the differences between orthodox (desiccation-tolerant) and recalcitrant (desiccation-sensitive) seeds. Information on epigenetic regulation, however, is lacking and thus limits our understanding of the processes defining the physiology of seeds. In the present comparative study, changes in the global levels of 5-methylcytosine (m5C) in orthodox and recalcitrant seeds of Acer platanoides L. and Acer pseudoplatanus L. were characterized during progressive stages of severe drying. Concomitant with their differential sensitivity to desiccation stress, we demonstrate variation in the response of embryonic axes and cotyledons to water deficit at the level of DNA methylation. Results indicate that desiccation-induced changes in m5C are both tissue- and seed category-specific and are highly correlated with recalcitrant seed viability. Moreover, we demonstrate that m5C global changes in response to desiccation are not retained in DNA isolated from seedlings, except in seedlings that are derived from strongly desiccated orthodox seeds (moisture content of 3.5%). Finally, the potential utilization of m5C status as a universal seed viability marker is discussed.


Assuntos
5-Metilcitosina/metabolismo , Acer/genética , Acer/metabolismo , Metilação de DNA , Dessecação , Genoma de Planta , Epigênese Genética , Plântula/genética , Plântula/metabolismo , Sementes/genética , Sementes/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...