Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Anal Chem ; 90(8): 5162-5170, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29605994

RESUMO

Accurate quantification of soluble glypican-3 in clinical samples using immunoassays is challenging, because of the lack of appropriate antibody reagents to provide a full spectrum measurement of all potential soluble glypican-3 fragments in vivo. Glypican-3 SOMAmer (slow off-rate modified aptamer) is a novel reagent that binds, with high affinity, to a far distinct epitope of glypican-3, when compared to all available antibody reagents generated in-house. This paper describes an integrated analytical approach to rational selection of key reagents based on molecular characterization by epitope mapping, with the focus on our work using a SOMAmer as a new reagent to address development challenges with traditional antibody reagents for the soluble glypican-3 immunoassay. A qualified SOMAmer-based assay was developed and used for soluble glypican-3 quantification in hepatocellular carcinoma (HCC) patient samples. The assay demonstrated good sensitivity, accuracy, and precision. Data correlated with those obtained using the traditional antibody-based assay were used to confirm the clinically relevant soluble glypican-3 forms in vivo. This result was reinforced by a liquid chromatography tandem mass spectrometry (LC-MS/MS) assay quantifying signature peptides generated from trypsin digestion. The work presented here offers an integrated strategy for qualifying aptamers as an alternative affinity platform for immunoassay reagents that can enable speedy assay development, especially when traditional antibody reagents cannot meet assay requirements.


Assuntos
Aptâmeros de Nucleotídeos/química , Carcinoma Hepatocelular/diagnóstico , Glipicanas/análise , Imunoensaio , Neoplasias Hepáticas/diagnóstico , Cromatografia Líquida , Humanos , Proteínas Recombinantes/análise , Solubilidade , Espectrometria de Massas em Tandem
2.
J Am Soc Mass Spectrom ; 29(1): 174-182, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28971440

RESUMO

Fibrillization of the microtubule-associated protein tau has been recognized as one of the signature pathologies of the nervous system in Alzheimer's disease, progressive supranuclear palsy, and other tauopathies. The conformational transition of tau in the fibrillization process, tau monomer to soluble aggregates to fibrils in particular, remains unclear. Here we report on the use of hydrogen/deuterium exchange mass spectrometry (HDX-MS) in combination with other biochemical approaches, including Thioflavin S fluorescence measurements, enzyme-linked immunosorbent assay (ELISA), and Western blotting to understand the heparin-induced tau's fibrillization. HDX-MS studies including anti-tau antibody epitope mapping experiments provided molecular level details of the full-length tau's conformational dynamics and its regional solvent accessibility upon soluble aggregates formation. The results demonstrate that R3 region in the full-length tau's microtubule binding repeat region (MTBR) is stabilized in the aggregation process, leaving both N and C terminal regions to be solvent exposed in the soluble aggregates and fibrils. The findings also illustrate the practical utility of orthogonal analytical methodologies for the characterization of protein higher order structure. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Massas/métodos , Proteínas tau/química , Anticorpos Monoclonais , Benzotiazóis/química , Sítios de Ligação , Medição da Troca de Deutério/métodos , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Humanos , Microtúbulos/metabolismo , Conformação Proteica , Solventes/química , Espectrometria de Fluorescência , Proteínas tau/imunologia , Proteínas tau/metabolismo
3.
Anal Chem ; 89(14): 7742-7749, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28621526

RESUMO

Higher-order structure (HOS) is a crucial determinant for the biological functions and quality attributes of protein therapeutics. Mass spectrometry (MS)-based protein footprinting approaches play an important role in elucidating the relationship between protein biophysical properties and structure. Here, we describe the use of a combined method including hydrogen-deuterium exchange (HDX), fast photochemical oxidation of proteins (FPOP), and site-specific carboxyl group footprinting to investigate the HOS of protein and protein complexes. The work focuses on implementing complementary solution-phase footprinting approaches that differ in time scale, specificity for protein residue side chains vs backbone as well as selectivity for different residue types to map integratively the epitope of human interleukin-6 receptor (IL-6R) for two adnectins with distinct affinities (Kd, Adnectin1 ∼ 6.2 pM vs Kd, Adnectin2 ∼ 46 nM). Furthermore, the study evaluates the resultant conformation/dynamic change of IL-6R. The suggested epitope, which is conserved for adnectin1 and adnectin2 binding, is a flexible loop that connects two ß-strands in the cytokine-binding domain (DII) of IL-6R. We also found that adnectin1, the more strongly binding ligand, induces structural perturbations on two unstructured loops that are distally located beyond the epitope. Those changes are either attenuated or not detected for the case of adnectin2 binding. In addition to providing credibility in epitope determination, utilization of those combined approaches reveals the structural effects that can differentiate protein therapeutics with apparently similar biophysical properties.


Assuntos
Mapeamento de Epitopos , Pegadas de Proteínas , Receptores de Interleucina-6/química , Medição da Troca de Deutério , Humanos , Espectrometria de Massas , Ligação Proteica , Conformação Proteica
4.
Anal Chem ; 89(4): 2250-2258, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28193005

RESUMO

Epitope mapping the specific residues of an antibody/antigen interaction can be used to support mechanistic interpretation, antibody optimization, and epitope novelty assessment. Thus, there is a strong need for mapping methods, particularly integrative ones. Here, we report the identification of an energetic epitope by determining the interfacial hot-spot that dominates the binding affinity for an anti-interleukin-23 (anti-IL-23) antibody by using the complementary approaches of hydrogen/deuterium exchange mass spectrometry (HDX-MS), fast photochemical oxidation of proteins (FPOP), alanine shave mutagenesis, and binding analytics. Five peptide regions on IL-23 with reduced backbone amide solvent accessibility upon antibody binding were identified by HDX-MS, and five different peptides over the same three regions were identified by FPOP. In addition, FPOP analysis at the residue level reveals potentially key interacting residues. Mutants with 3-5 residues changed to alanine have no measurable differences from wild-type IL-23 except for binding of and signaling blockade by the 7B7 anti-IL-23 antibody. The M5 IL-23 mutant differs from wild-type by five alanine substitutions and represents the dominant energetic epitope of 7B7. M5 shows a dramatic decrease in binding to BMS-986010 (which contains the 7B7 Fab, where Fab is fragment antigen-binding region of an antibody), yet it maintains functional activity, binding to p40 and p19 specific reagents, and maintains biophysical properties similar to wild-type IL-23 (monomeric state, thermal stability, and secondary structural features).


Assuntos
Alanina/metabolismo , Anticorpos Monoclonais/metabolismo , Mapeamento de Epitopos/métodos , Epitopos/metabolismo , Interleucina-23/metabolismo , Reações Antígeno-Anticorpo , Clonagem Molecular , Medição da Troca de Deutério , Fragmentos Fab das Imunoglobulinas/metabolismo , Espectrometria de Massas , Modelos Moleculares , Mutagênese , Oxirredução , Ligação Proteica
5.
J Pharm Biomed Anal ; 138: 166-174, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28213177

RESUMO

Synthetic macrocyclic peptides with natural and unnatural amino acids have gained considerable attention from a number of pharmaceutical/biopharmaceutical companies in recent years as a promising approach to drug discovery, particularly for targets involving protein-protein or protein-peptide interactions. Analytical scientists charged with characterizing these leads face multiple challenges including dealing with a class of complex molecules with the potential for multiple isomers and variable charge states and no established standards for acceptable analytical characterization of materials used in drug discovery. In addition, due to the lack of intermediate purification during solid phase peptide synthesis, the final products usually contain a complex profile of impurities. In this paper, practical analytical strategies and methodologies were developed to address these challenges, including a tiered approach to assessing the purity of macrocyclic peptides at different stages of drug discovery. Our results also showed that successful progression and characterization of a new drug discovery modality benefited from active analytical engagement, focusing on fit-for-purpose analyses and leveraging a broad palette of analytical technologies and resources.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Descoberta de Drogas/métodos , Imageamento por Ressonância Magnética/métodos , Peptídeos/química , Aminoácidos/química
6.
J Chromatogr A ; 1487: 116-128, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28131592

RESUMO

Atropisomers are stereoisomers resulting from hindered bond rotation. From synthesis of pure atropisomers, characterization of their interconversion thermodynamics to investigation of biological stereoselectivity, the evaluation of drug candidates subject to atropisomerism creates special challenges and can be complicated in both early drug discovery and later drug development. In this paper, we demonstrate an array of analytical techniques and systematic approaches to study the atropisomerism of drug molecules to meet these challenges. Using a case study of Bruton's tyrosine kinase (BTK) inhibitor drug candidates at Bristol-Myers Squibb, we present the analytical strategies and methodologies used during drug discovery including the detection of atropisomers, the determination of their relative composition, the identification of relative chirality, the isolation of individual atropisomers, the evaluation of interconversion kinetics, and the characterization of chiral stability in the solid state and in solution. In vivo and in vitro stereo-stability and stereo-selectivity were investigated as well as the pharmacological significance of any changes in atropisomer ratios. Techniques applied in these studies include analytical and preparative enantioselective supercritical fluid chromatography (SFC), enantioselective high performance liquid chromatography (HPLC), circular dichroism (CD), and mass spectrometry (MS). Our experience illustrates how atropisomerism can be a very complicated issue in drug discovery and why a thorough understanding of this phenomenon is necessary to provide guidance for pharmaceutical development. Analytical techniques and methodologies facilitate key decisions during the discovery of atropisomeric drug candidates by characterizing time-dependent physicochemical properties that can have significant biological implications and relevance to pharmaceutical development plans.


Assuntos
Cromatografia Líquida de Alta Pressão , Cromatografia com Fluido Supercrítico , Descoberta de Drogas/métodos , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia , Dicroísmo Circular , Descoberta de Drogas/instrumentação , Cinética , Espectrometria de Massas , Estereoisomerismo , Termodinâmica
7.
J Am Soc Mass Spectrom ; 28(5): 795-802, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27527097

RESUMO

Aggregation of protein therapeutics has long been a concern across different stages of manufacturing processes in the biopharmaceutical industry. It is often indicative of aberrant protein therapeutic higher-order structure. In this study, the aggregation propensity of a human Fc-fusion protein therapeutic was characterized. Hydrogen/deuterium exchange mass spectrometry (HDX-MS) was applied to examine the conformational dynamics of dimers collected from a bioreactor. HDX-MS data combined with spatial aggregation propensity calculations revealed a potential aggregation interface in the Fc domain. This study provides a general strategy for the characterization of the aggregation propensity of Fc-fusion proteins at the molecular level.Graphical Abstract.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Espectrometria de Massas/métodos , Agregados Proteicos , Medição da Troca de Deutério/métodos , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química
8.
J Chromatogr A ; 1455: 133-139, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27286648

RESUMO

UV spectrophotometry is widely used to determine the molar extinction coefficients (MECs) of cytotoxic drugs as well as the drug antibody ratios (DARs) of antibody drug conjugates (ADCs). However, the unknown purity of a drug due to interfering impurities can lead to erroneous MECs and DARs. Hence, reliable methods to accurately determine purity and the MECs of drugs with limited quantity is urgently needed in Drug Discovery. Such a method has been developed. It achieves absolute purity and accurate MEC determination by a single automated HPLC analysis that uses less than 5µg of material. Specifically, analytical HPLC separation with online UV detection was used to resolve impurities and measure absorbance from only the compound of interest. Simultaneously, an online chemiluminescence nitrogen detector (CLND) was used to determine the concentration of the analyte. The MECs were then calculated from the absorbance and concentration results. The accuracy of the method was demonstrated using caffeine and a commercial cytotoxic drug, DM1. This approach is particularly suited to analyzing mixtures or samples with low purities. Excellent reproducibility was demonstrated by analyzing a proprietary drug with linker synthesized from different batches with very different levels of purity. In addition, the MECs of drug with linker, along with ADC peak areas measured from size exclusion chromatography (SEC), were used to calculate DARs for 21 in-house ADCs. The DAR results were consistent with those obtained by MS analysis.


Assuntos
Anticorpos/química , Antineoplásicos Fitogênicos/química , Imunoconjugados/química , Maitansina/análogos & derivados , Anticorpos/imunologia , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Medições Luminescentes , Espectrometria de Massas , Maitansina/química , Nitrogênio/análise , Espectroscopia de Prótons por Ressonância Magnética , Espectrofotometria Ultravioleta
9.
Bioanalysis ; 8(3): 193-204, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26811930

RESUMO

BACKGROUND: Therapeutic protein discovery study highlights the need for the development of quantitative bioanalytical methods for determining the levels of both the therapeutic protein and the target protein, as well. RESULTS: For the quantitation of BMS-986089, both accuracy (99-103%) and precision (2.4-12%) were obtained for the analysis of the surrogate peptide (ITYGGNSPVQEFTVPGR), in addition to the accuracy (100-108%) and precision (0.7-18%) that were obtained for the analysis of the surrogate peptide (VVSVLTVLHQDWLNGK). For Myostatin, accuracy (94-103%) and precision (2.4-14.9%) were obtained for the analysis of the surrogate peptide (IPAMVVDR). CONCLUSION: The developed method was applied to the analysis of samples following dosing of BMS-986089 to mice. This method highlights the potential of LC-MS/MS-based methods to eventually assess in vivo drug-target engagement.


Assuntos
Cromatografia Líquida/métodos , Miostatina/análise , Proteínas Recombinantes de Fusão/análise , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Cromatografia Líquida/economia , Análise Custo-Benefício , Humanos , Imunoglobulina G/análise , Imunoglobulina G/metabolismo , Imunoglobulina G/farmacologia , Imunoglobulina G/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Miostatina/metabolismo , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/química , Ratos , Proteínas Recombinantes de Fusão/farmacocinética , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Espectrometria de Massas em Tandem/economia , Tripsina/metabolismo
10.
J Chromatogr A ; 1426: 133-9, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26674608

RESUMO

Two dimensional liquid chromatography (2D-LC) coupling size exclusion (SEC) and hydrophilic interaction chromatography (HILIC) is demonstrated as a useful tool to study polar excipients, such as histidine and its degradant, in protein formulation samples. The SEC-HILIC setup successfully removed interferences from complex sample matrices and enabled accurate mass measurement of the histidine degradation product, which was then determined to be trans-urocanic acid. Because the SEC effluent is a strong solvent for the second dimension HILIC, experimental parameters needed to be carefully chosen, i.e., small transferring loop, fast gradient at high flow rates for the second dimension gradient, in order to mitigate the solvent mismatch and to ensure good peak shapes for HILIC separations. In addition, the generation of trans-urocanic acid was quantified by single heart-cutting SEC-HILIC 2D-LC combined with stable-isotope labeling mass spectrometry. Compared with existing 2D quantification methods, the proposed approach is fast, insensitive to solvent mismatch between dimensions, and tolerant of small retention time shifts in the first dimension. Finally, the first dimension diode array detector was found to be a potential degradation source for photolabile analytes such as trans-urocanic acid.


Assuntos
Cromatografia Líquida/métodos , Fibronectinas/química , Histidina/química , Isótopos de Carbono , Química Farmacêutica , Cromatografia em Gel , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Espectrometria de Massas/métodos , Isótopos de Nitrogênio
12.
J Am Soc Mass Spectrom ; 26(10): 1791-4, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26122520

RESUMO

Antibody-drug conjugates (ADCs) are emerging modalities in the pharmaceutical industry. Characterization of ADC's drug-to-antibody ratio (DAR) becomes a key assessment because of its importance in ADC efficacy and safety. DAR characterization by conventional intact protein MS analysis, however, is challenging because of high heterogeneity of ADC samples. The analysis often requires protein deglycosylation, disulfide-bond reduction, or partial fragmentation. In this study, we illustrate the practical utility of ion mobility mass spectrometry (IM-MS) in a routine LC/MS workflow for DAR measurements. This strategy allows analyte "cleanup" in the gas phase, providing significant improvement of signal-to-noise ratios of ADC intact mass spectra for accurate DAR measurements. In addition, protein drift time analysis offers a new dimension in monitoring the changes of DAR in lot-to-lot analysis.


Assuntos
Imunoconjugados/análise , Imunoconjugados/química , Espectrometria de Massas/métodos , Cromatografia Líquida de Alta Pressão , Preparações Farmacêuticas/análise , Preparações Farmacêuticas/química
13.
Drug Discov Today Technol ; 13: 25-31, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26190680

RESUMO

Metabolomics has roots in the pharmaceutical industry that go back nearly three decades. Initially focused on applications in toxicology and disease pathology, more recent academic and commercial efforts have helped advance metabolomics as a tool to reveal the molecular basis of biological processes and pharmacological responses to drugs. This article will discuss areas where metabolomic technologies and applications are poised to have the greatest impact in the discovery and development of pharmaceuticals.


Assuntos
Descoberta de Drogas , Indústria Farmacêutica , Metabolômica , Humanos
14.
J Org Chem ; 80(14): 7019-32, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26151079

RESUMO

Clopidogrel is a prodrug anticoagulant with active metabolites that irreversibly inhibit the platelet surface GPCR P2Y12 and thus inhibit platelet activation. However, gaining an understanding of patient response has been limited due to imprecise understanding of metabolite activity and stereochemistry, and a lack of acceptable analytes for quantifying in vivo metabolite formation. Methods for the production of all bioactive metabolites of clopidogrel, their stereochemical assignment, and the development of stable analytes via three conceptually orthogonal routes are disclosed.


Assuntos
Microssomos Hepáticos/metabolismo , Piperidinas/síntese química , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/metabolismo , Pró-Fármacos/síntese química , Ticlopidina/análogos & derivados , Fenômenos Biológicos , Clopidogrel , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Piperidinas/química , Inibidores da Agregação Plaquetária/química , Pró-Fármacos/química , Estereoisomerismo , Ticlopidina/síntese química , Ticlopidina/química , Ticlopidina/metabolismo
15.
Expert Rev Proteomics ; 12(2): 159-69, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25711416

RESUMO

IL-23 is an important therapeutic target for the treatment of inflammatory diseases. Adnectins are targeted protein therapeutics that are derived from domain III of human fibronectin and have a similar protein scaffold to antibodies. Adnectin 2 was found to bind to IL-23 and compete with the IL-23/IL-23R interaction, posing a potential protein therapeutic. Hydrogen/deuterium exchange mass spectrometry and computational methods were applied to probe the binding interactions between IL-23 and Adnectin 2 and to determine the correlation between the two orthogonal methods. This review summarizes the current structural knowledge about IL-23 and focuses on the applicability of hydrogen/deuterium exchange mass spectrometry to investigate the higher order structure of proteins, which plays an important role in the discovery of new and improved biotherapeutics.


Assuntos
Terapia Biológica , Deutério/química , Hidrogênio/química , Interleucina-23/química , Biologia Computacional , Humanos , Interleucina-23/metabolismo , Espectrometria de Massas/métodos , Ligação Proteica , Conformação Proteica , Receptores de Interleucina/química
16.
J Am Soc Mass Spectrom ; 25(12): 2084-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267085

RESUMO

Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin ((10)Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.


Assuntos
Mapeamento de Epitopos/métodos , Receptores ErbB/química , Receptores ErbB/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Epitopos , Humanos , Modelos Moleculares , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína
17.
J Am Soc Mass Spectrom ; 25(12): 2093-102, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25223306

RESUMO

The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.ᅟ


Assuntos
Receptores ErbB/química , Receptores ErbB/metabolismo , Fibronectinas/química , Fibronectinas/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Medição da Troca de Deutério , Receptores ErbB/antagonistas & inibidores , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína
18.
Rapid Commun Mass Spectrom ; 28(13): 1535-43, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24861605

RESUMO

RATIONALE: Liquid chromatography/tandem mass spectrometry (LC/MS/MS) assays are increasingly being used for absolute quantitation of proteins due to high specificity and low cost. However, the major challenge for the LC/MS method is insufficient sensitivity. This paper details the strategies developed to maximize the sensitivity from aspects of chromatography, mass spectrometry, and sample preparation to achieve a highly sensitive LC/MS method. METHODS: The method is based on the LC/MS/MS measurement of a surrogate peptide generated from trypsin digestion of interferon-gamma-inducible protein-10 (IP-10). The sample preparation strategy involved selectively extracting IP-10 and removing high-abundance serum proteins through acidified protein precipitation (PPT). It was revealed in this work that these high-abundance serum proteins, if not separated from the protein of interest, could cause significant ionization saturation and high background noise in selected reaction monitoring (SRM), leading to a 100-fold higher lower limit of quantification (LLOQ). RESULTS: Our method demonstrated that the acidified PPT could be optimized to selectively extract the protein of interest with full recovery of 97% to 103%, while the high-abundance serum proteins could be effectively removed with minimal matrix effect of 90% to 93%. For the first time, a highly sensitive LC/MS method with a LLOQ of 31.62 pM for the quantitation of IP-10 has been achieved, which is a 100-fold improvement over the generic method. CONCLUSIONS: The described method offers excellent sensitivity with advantages of being antibody reagent independent and leads to significant cost and time savings. It has been successfully employed to determine both total and free IP-10 levels in human serum samples. This method development strategy may also be applied to other small proteins.


Assuntos
Quimiocina CXCL10/sangue , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Proteínas Sanguíneas/química , Quimiocina CXCL10/química , Formiatos , Humanos , Análise dos Mínimos Quadrados , Sensibilidade e Especificidade , Tripsina
19.
J Lipid Res ; 55(8): 1784-96, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24872406

RESUMO

Lysophosphatidic acids (LPAs) are biologically active signaling molecules involved in the regulation of many cellular processes and have been implicated as potential mediators of fibroblast recruitment to the pulmonary airspace, pointing to possible involvement of LPA in the pathology of pulmonary fibrosis. LPAs have been measured in various biological matrices and many challenges involved with their analyses have been documented. However, little published information is available describing LPA levels in human bronchoalveolar lavage fluid (BALF). We therefore conducted detailed investigations into the effects of extensive sample handling and sample preparation conditions on LPA levels in human BALF. Further, targeted lipid profiling of human BALF and plasma identified the most abundant lysophospholipids likely to interfere with LPA measurements. We present the findings from these investigations, highlighting the importance of well-controlled sample handling for the accurate quantitation of LPA. Further, we show that chromatographic separation of individual LPA species from their corresponding lysophospholipid species is critical to avoid reporting artificially elevated levels. The optimized sample preparation and LC/MS/MS method was qualified using a stable isotope-labeled LPA as a surrogate calibrant and used to determine LPA levels in human BALF and plasma from a Phase 0 clinical study comparing idiopathic pulmonary fibrosis patients to healthy controls.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Fibrose Pulmonar Idiopática/metabolismo , Lisofosfolipídeos/metabolismo , Cromatografia Líquida/métodos , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos
20.
Anal Chem ; 86(8): 4033-40, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24661124

RESUMO

Tandem column supercritical fluid chromatography (SFC) has demonstrated to be a useful technique to resolve complex mixtures by serially coupling two columns of different selectivity. The overall selectivity of a tandem column separation is the retention time weighted average of selectivity from each coupled column. Currently, the method development merely relies on extensive screenings and is often a hit-or-miss process. No attention is paid to independently adjust retention and selectivity contributions from individual columns. In this study, we show how tandem column SFC selectivity can be optimized by changing relative dimensions (length or inner diameter) of the coupled columns. Moreover, we apply column back pressure as a unique parameter for SFC optimization. Continuous tuning of tandem column SFC selectivity is illustrated through column back pressure adjustments of the upstream column, for the first time. In addition, we show how and why changing coupling order of the columns can produce dramatically different separations. Using the empirical mathematical equation derived in our previous study, we also demonstrate a simulation of tandem column separations based on a single retention time measurement on each column. The simulation compares well with experimental results and correctly predicts column order and back pressure effects on the separations. Finally, considerations on instrument and column hardware requirements are discussed.


Assuntos
Cromatografia com Fluido Supercrítico/métodos , Algoritmos , Cromatografia com Fluido Supercrítico/instrumentação , Simulação por Computador , Desenho de Equipamento , Modelos Teóricos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/isolamento & purificação , Pressão , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...