Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674575

RESUMO

To reveal genetic diversity for effective resistance to five foliar diseases and toxic aluminum ions, the entire collection of wheat species from the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) originating from Ethiopia and Eritrea were studied regarding their traits. The collection contains 509 samples of four wheat species (Triticum aestivum-122 samples; T. aethiopicum-340 samples; T. polonicum-6 samples; and T. dicoccum-41 samples). The majority of accessions are new entries of landraces added to the Vavilov collection as a result of the Russian-Ethiopian expedition in 2012. Wheat seedlings were inoculated with causal agents of leaf rust (Pt), powdery mildew (Bgt), Septoria nodorum blotch (SNB), and dark-brown leaf spot blotch (HLB). The types of reaction and disease development were assessed to describe the levels of resistance. All samples of T. aethiopicum were also screened for seedling and adult resistance to Pt, Bgt, and yellow rust (Pst) under field conditions after double inoculation with the corresponding pathogens. To study tolerance to abiotic stress, seedlings were grown in a solution of Al3+ (185 µM, pH 4,0) and in water. The index of root length was used to characterize tolerance. Seedlings belonging to only two accessions out of those studied-k-68236 of T. aethiopicum and k-67397 of T. dicoccum-were resistant to Pt at 20 °C but susceptible at 25 °C. Specific molecular markers closely linked to the five genes for Pt resistance effective against populations of the pathogen from the northwestern region of Russia were not amplified in these two entries after PCR with corresponding primers. Four entries of T. dicoccum-k-18971, k-18975, k-19577, and k-67398-were highly resistant to Bgt. All samples under study were susceptible to HLB and SNB. Under field conditions, 15% of the T. aethiopicum samples were resistant to Pst, both at the seedling and the flag leaf stages, but all were susceptible to the other diseases under study. Among the evaluated samples, 20 entries of T. aestivum, 1 of T. polonicum (k-43765), and 2 of T. dicoccum (k-18971, k-67397) were tolerant to aluminum ions. The identified entries could be valuable sources for the breeding of T. aestivum and other wheats for resistance to biotic and abiotic stresses.

2.
Plants (Basel) ; 11(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36559579

RESUMO

To identify new sources of effective resistance to four foliar diseases of wheat, 173 accessions of four wheat species, Triticum boeoticum, T. urartu, T. araraticum, and T. dicoccoides, from the VIR collection were tested at the juvenile and adult growth stages for resistance to leaf rust (Pt = Puccinia triticina), powdery mildew (Bgt = Blumeria graminis tritici), Septoria nodorum blotch (SNB), and dark-brown leaf spot blotch (HLB = Helminthospjrium leaf blotch). The accessions included new additions to the collection, some old samples that had never been tested before, as well as earlier tested samples noted for high levels of juvenile resistance to some fungal diseases. Natural populations of Puccinia triticina and Blumeria graminis f. sp. tritici, mixture of Parastagonospora nodorum and Bipolaris sorokiniana isolates were used to inoculate and to evaluate resistance to Pt, Bgt, SNB, and HLB, respectively. Two samples of T. boeoticum, three of T. urartu, and one of T. araraticum were resistant to leaf rust at both tested stages. Further tests (phytopathological and molecular analyses) excluded Lr9, Lr19, Lr24, Lr41, or Lr47 as single genes controlling resistance; hence, these accessions likely carry new effective leaf rust resistance genes. High level of Bgt resistance was identified in three entries of T. boeoticum, one of T. araraticum, and eleven of T. dicoccoides. All tested accessions were susceptible to HLB and SNB at both tested stages. Accessions identified as resistant are valuable plant material for introgressive hybridization in bread and durum wheat breeding. The results are discussed in the context of N.I. Vavilov's concept of crop origin and diversity, and the laws of plant natural immunity to infectious diseases.

3.
Plants (Basel) ; 11(5)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35270169

RESUMO

Microdochium nivale is one of the most harmful fungal diseases, causing colossal yield losses and deteriorating grain quality. Wheat genotypes from the world collection of the N.I. Vavilov Institute (VIR) were evaluated for fifty years to investigate their resistance to biotic stress factors (M. nivale). Between 350 to 1085 of winter wheat genotypes were investigated annually. Ten out of fifty years were identified as rot epiphytotics (1978, 1986, 1989, 1990, 1993, 1998, 2001, 2003, 2005 and 2021). The wheat collection was investigated by following the VIR methodological requirements and CMEA unified classification of Triticum aestivum L. The field investigations were carried out in the early spring during fixed-route observations and data collection was included on the spread and development degree of the disease, followed by microbiological and microscopic pathogen identifications. The observations revealed that the primary reason for pink snow mold to infect the wheat crops was abiotic stress factors, such as thawed soil covered in snow that increased the soil temperature by 1.0-4.6 °C above normal. Under these conditions, the plants kept growing, quickly exhausting their carbohydrate and protein resources, thus weakening their immune systems, which made them an easy target for different infections, mainly cryophilic fungi, predominantly Microdochium nivale in the Moscow region. In some years, the joint effect of abiotic and biotic stresses caused crop failure, warranting the replanting of the spring wheat. The investigated wheat genotypes exhibited variable resistance to pink snow mold. The genotypes Mironovskaya 808 (k-43920) from Ukraine;l Nemchinovskaya 846 (k-56861), from Russia; Novobanatka (k-51761) from Yugoslavia; Liwilla (k-57580) from Poland; Zdar (UH 7050) from the Czech Republic; Maris Plowman (k-57944) from the United Kingdom; Pokal (k-56827) from Austria; Hvede Sarah (k-56289) from Denmark; Moldova 83 (k-59750) from Romania; Compal (k-57585) from Germany; Linna (k-45889) from Finland and Kehra (k-34228) from Estonia determined the sources, stability and tolerance to be used in advanced breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...