Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 263: 660-664, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29776722

RESUMO

In this study fungal pretreatment of non-sterile tall wheat grass via the white rot fungi Flammulina velutipes was studied and the effect on biodegradability of lignocellulosic biomass and methane production, was evaluated. Degradation of lignin, cellulose, hemicellulose, and dry matter in non-sterile tall wheat grass during 28 days of fungal pretreatment using different inoculum ratio (0%-50%) and moisture content (MC) (45% MC, 65% MC, and 75% MC) were assessed via comparison to untreated biomass. Pretreatment with F. velutipes was most effective at 65% MC and 40% inoculum ratio, resulting in 22% lignin removal. The corresponding methane yields were 181.3 Ndm3·kg VS-1, which were 280% higher than for the untreated tall wheat grass.


Assuntos
Flammulina , Metano/biossíntese , Triticum , Biodegradação Ambiental , Biomassa , Reatores Biológicos , Lignina
2.
J Appl Phycol ; 29(4): 1735-1743, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28775655

RESUMO

The aim of this study was to determine the suitability of beet molasses, an agro-industrial by-product, as an alternative culture medium component for photoheterotrophic and mixotrophic cultivation of Parachlorella kessleri. Application of beet molasses improved microalgal cell growth and modified the biochemical composition of P. kessleri biomass. During the addition of molasses to culture media with simultaneous aeration, the maximum biomass productivity, oil and protein productivity, and calorific value were 0.42 g L-1 day-1, 112.56 and 244.95 mg L-1 day-1, and 22.1 MJ kg-1, respectively. Under these conditions, the total content of polyunsaturated C16-C18 fatty acids decreased, which was suitable for application in biodiesel. Besides oils and carbohydrates, P. kessleri had an ability to synthesize significant amounts of proteins, especially during molasses utilization. This provides a possibility of a wide range of non-fuel applications of P. kessleri biomass.

3.
Bioresour Technol ; 200: 194-200, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26492171

RESUMO

The aim of this work was to analyze the impact of three different moisture contents (MC), at 45% MC, 65% MC, 75% MC, on the degradation of cellulose, hemicellulose, and lignin during fungi treatment by Flammulina velutipes of Agropyron elongatum 'BAMAR' and on biogas production. The analysis of chemical composition shown that F. velutipes had greater selectivity for lignin biodegradation with the highest hemicellulose and lignin removal at 29.1% and 35.4%, respectively, and lowest cellulose removal (20.48%) at 65% MC. F. velutipes cultivated at 65% MC increased biogas production of 398.07Ndm(3)kg(-1)VS(-1), which was 120% higher than the untreated sample. These treatment conditions resulted in 134% more methane yield compared with untreated sample. The results of this study suggested that A. elongatum is a potential biomass for biogas production in agriculture biogas plant and white-rot fungus F. velutipes provides an effective methods for improve biodegradation of A. elongatum.


Assuntos
Agropyron , Biocombustíveis , Biomassa , Agropyron/química , Agropyron/microbiologia , Anaerobiose , Fungos , Lignina/química , Lignina/metabolismo , Eliminação de Resíduos
4.
Bioresour Technol ; 156: 303-6, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24518439

RESUMO

The chemical composition and efficiency of biogas production in the methane fermentation process of silages of wild and cultivated varieties of reed canary grass were compared. An attempt was made to answer the question on how the habitat and the way of utilization of plants affect chemical composition and biogas yield. Physicochemical properties such as dry matter, organic dry matter, protein, fat, crude fiber fraction, macro- and microelements content were considered. The anaerobic digestion process and FTIR analysis were also carried out. The results showed that the two varieties differ essentially in their physical and chemical properties. The cultivated variety was characterized by higher biogas yield (406Ndm(3)kg(-1) VS) than the wild one (120Ndm(3)kg(-1) VS). This was probably related to the chemical composition of plants, especially the high content of indigestible crude fiber fractions and ash. These components could reduce biogas quantity and quality.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Phalaris/crescimento & desenvolvimento , Phalaris/metabolismo , Elementos Químicos , Espectrofotometria Atômica , Espectroscopia de Infravermelho com Transformada de Fourier
5.
Bioprocess Biosyst Eng ; 37(4): 735-41, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24037038

RESUMO

The effect of different photoperiods: 24 h illumination and a 12:12-h light/dark (12L:12D) cycle on the growth rate and biomass productivity was studied in five algal species: Neochloris conjuncta, Neochloris terrestris, Neochloris texensis, Botryococcus braunii and Scenedesmus obliquus. The green microalgae examined differ in the reproduction mode. Continuous illumination stimulated the growth of B. braunii and S. obliquus more effectively than the growth of the microalgal species from the genus Neochloris. However, under shorter duration of light of the same intensity (12L:12D cycle), the growth of all the three species of Neochloris was stimulated. Under continuous illumination, the specific growth rate in the first phase of B. braunii and S. obliquus cultures was higher than the growth rate of Neochloris, whereas under the 12L:12D cycle, the specific growth rate of all the three Neochloris species was generally higher than that in B. braunii and S. obliquus. As a result, the light regime influenced algal biomass productivity differently. The maximum biomass productivity was obtained in B. braunii and S. obliquus cultures carried out at continuous illumination. All the Neochloris species produced biomass more efficiently at the 12L:12D cycle, which was two-threefold higher than that of B. braunii and S. obliquus. The unicellular species of the green microalgae from the genus Neochloris, examined for the first time in this study, are promising prospective objects for algal biotechnology.


Assuntos
Biomassa , Clorófitas/crescimento & desenvolvimento , Fotoperíodo
6.
J Toxicol Environ Health A ; 73(17-18): 1194-201, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20706944

RESUMO

The aims of this study were to (1) examine the extent of bacterial contamination of soils subjected to exposure to dairy sewage sludge applied to soils as measured by determination of number of bacteria from the Escherichia coli family and (2) determine the effects of dairy sewage sludge and straw on populations of other microbial species present in gray-brown podzolic soil. The gray-brown podzolic soil was formed from heavy loamy sand, which is characterized by the following granulometric composition: a sand fraction, 65%; a silt fraction, 19%; and a silt and clay fraction; 16%. The brown soil was formed from silt-loam and characterized by the following granulometric composition of silty-clay deposit: sand fraction, 8%; silt fraction, 48%; and clay and silt fraction, 46%. In dairy sewage sludge the total bacteria number as defined by Alef and Nannipieri (1995) was 51 x 10(4) colony-forming units (cfu)/ kg dry matter (dm), fungi total number 10 x 10(3) cfu/ kg dm, and E. coli bacteria 9.5 x 10(3) most probable number (MPN)/kg dm. In dairy sewage sludge mixed with straw, total number of bacteria and total number of fungi decreased to 10(3) and 10(2), respectively. Competition for nitrogen, glucose, and lactose and organic acids such as acetic and succinic with soil microorganisms, as well as soil conditions such as lack of oxygen, lower soil pH, and temperature, may account for the reduction in the number of E. coli bacteria in soils to which dairy sewage sludge was applied. Dairy sewage sludge may provide a beneficial impact on soil environment and adversely affect microorganisms such that dairy sewage sludge may be used as a safe organic fertilizer.


Assuntos
Bactérias/metabolismo , Compostos Orgânicos/química , Esgotos/química , Solo/análise , Escherichia coli/metabolismo , Fertilizantes/estatística & dados numéricos , Células-Tronco
7.
J Toxicol Environ Health A ; 73(17-18): 1230-5, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20706948

RESUMO

The aim of this study was to determine the effects of desiccants and plant growth regulators on selected microbial species affecting rape seeds, with special emphasis on the growth of fungi and identification of the genus and species composition. The experimental material in the study was seeds of winter rape cv. Californium that were collected from the field during combine harvest. The chemical agents applied, both desiccants and growth regulators, generally decreased the populations of bacteria occurring on the surface of rape seeds. The responses of fungi depended upon the type of agent applied and were manifested as either stimulation or inhibition of the growth of the fungal species. The fungi isolated from the surface of rape seeds were characteristic of those found in the field environment (Cladosporium and Penicillium) and typical for those present on the surface of rape seeds (Alternaria).


Assuntos
Fungos/isolamento & purificação , Sementes/microbiologia , Alternaria/isolamento & purificação , Brassica napus , Brassica rapa , Cladosporium/efeitos dos fármacos , Microbiologia , Penicillium/efeitos dos fármacos , Penicillium/isolamento & purificação , Penicillium/fisiologia , Reguladores de Crescimento de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...