Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 39(7): 1485-99, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26759219

RESUMO

In the field, biotic and abiotic stresses frequently co-occur. As a consequence, common molecular signalling pathways governing adaptive responses to individual stresses can interact, resulting in compromised phenotypes. How plant signalling pathways interact under combined stresses is poorly understood. To assess this, we studied the consequence of drought and soil flooding on resistance of Solanum dulcamara to Spodoptera exigua and their effects on hormonal and transcriptomic profiles. The results showed that S. exigua larvae performed less well on drought-stressed plants than on well-watered and flooded plants. Both drought and insect feeding increased abscisic acid and jasmonic acid (JA) levels, whereas flooding did not induce JA accumulation. RNA sequencing analyses corroborated this pattern: drought and herbivory induced many biological processes that were repressed by flooding. When applied in combination, drought and herbivory had an additive effect on specific processes involved in secondary metabolism and defence responses, including protease inhibitor activity. In conclusion, drought and flooding have distinct effects on herbivore-induced responses and resistance. Especially, the interaction between abscisic acid and JA signalling may be important to optimize plant responses to combined drought and insect herbivory, making drought-stressed plants more resistant to insects than well-watered and flooded plants.


Assuntos
Secas , Inundações , Herbivoria , Solanum/metabolismo , Estresse Fisiológico , Ácido Abscísico/metabolismo , Animais , Ciclopentanos/metabolismo , Etilenos/metabolismo , Insetos , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
2.
Mol Ecol ; 22(24): 6179-96, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24219759

RESUMO

Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.


Assuntos
Herbivoria , Himenópteros/fisiologia , Lepidópteros/fisiologia , Mostardeira/química , Spodoptera/fisiologia , Compostos Orgânicos Voláteis/química , Animais , Ciclopentanos/metabolismo , Feminino , Regulação da Expressão Gênica de Plantas , Especificidade de Hospedeiro , Larva/fisiologia , Lepidópteros/parasitologia , Mostardeira/genética , Oxilipinas/metabolismo , Folhas de Planta/química , Folhas de Planta/genética , Spodoptera/parasitologia
3.
PLoS One ; 8(6): e65502, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776489

RESUMO

Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA). Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.


Assuntos
Brassica/efeitos dos fármacos , Brassica/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , Reguladores de Crescimento de Plantas/farmacologia
4.
Front Plant Sci ; 4: 87, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23630532

RESUMO

Insects and nematodes are the most diverse and abundant groups of multicellular animals feeding on plants on either side of the soil-air interface. Several herbivore-induced responses are systemic, and hence can influence the preference and performance of organisms in other plant organs. Recent studies show that plants mediate interactions between belowground plant parasitic nematodes (PPNs) and aboveground herbivorous insects. Based on the knowledge of plant responses to pathogens, we review the emerging insights on plant systemic responses against root-feeding nematodes and shoot-feeding insects. We discuss the potential mechanisms of plant-mediated indirect interactions between both groups of organisms and point to gaps in our knowledge. Root-feeding nematodes can positively or negatively affect shoot herbivorous insects, and vice versa. The outcomes of the interactions between these spatially separated herbivore communities appear to be influenced by the feeding strategy of the nematodes and the insects, as well as by host plant susceptibility to both herbivores. The potential mechanisms for these interactions include systemic induced plant defense, interference with the translocation and dynamics of locally induced secondary metabolites, and reallocation of plant nutritional reserves. During evolution, PPNs as well as herbivorous insects have acquired effectors that modify plant defense responses and resource allocation patterns to their advantage. However, it is also known that plants under herbivore attack change the allocation of their resources, e.g., for compensatory growth responses, which may affect the performance of other organisms feeding on the plant. Studying the chemical and molecular basis of these interactions will reveal the molecular mechanisms that are involved. Moreover, it will lead to a better understanding of the ecological relevance of aboveground-belowground interactions, as well as support the development of sustainable pest management technologies.

5.
Plant Physiol ; 160(2): 944-54, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904163

RESUMO

The potato cyst nematode Globodera rostochiensis invades roots of host plants where it transforms cells near the vascular cylinder into a permanent feeding site. The host cell modifications are most likely induced by a complex mixture of proteins in the stylet secretions of the nematodes. Resistance to nematodes conferred by nucleotide-binding-leucine-rich repeat (NB-LRR) proteins usually results in a programmed cell death in and around the feeding site, and is most likely triggered by the recognition of effectors in stylet secretions. However, the actual role of these secretions in the activation and suppression of effector-triggered immunity is largely unknown. Here we demonstrate that the effector SPRYSEC-19 of G. rostochiensis physically associates in planta with the LRR domain of a member of the SW5 resistance gene cluster in tomato (Lycopersicon esculentum). Unexpectedly, this interaction did not trigger defense-related programmed cell death and resistance to G. rostochiensis. By contrast, agroinfiltration assays showed that the coexpression of SPRYSEC-19 in leaves of Nicotiana benthamiana suppresses programmed cell death mediated by several coiled-coil (CC)-NB-LRR immune receptors. Furthermore, SPRYSEC-19 abrogated resistance to Potato virus X mediated by the CC-NB-LRR resistance protein Rx1, and resistance to Verticillium dahliae mediated by an unidentified resistance in potato (Solanum tuberosum). The suppression of cell death and disease resistance did not require a physical association of SPRYSEC-19 and the LRR domains of the CC-NB-LRR resistance proteins. Altogether, our data demonstrated that potato cyst nematodes secrete effectors that enable the suppression of programmed cell death and disease resistance mediated by several CC-NB-LRR proteins in plants.


Assuntos
Resistência à Doença , Proteínas de Helminto/metabolismo , Nematoides/patogenicidade , Proteínas/metabolismo , Solanum lycopersicum/imunologia , Sequência de Aminoácidos , Animais , Morte Celular , Imunoprecipitação da Cromatina , Clonagem Molecular , Genes de Plantas , Vetores Genéticos , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Interações Hospedeiro-Parasita , Proteínas de Repetições Ricas em Leucina , Solanum lycopersicum/genética , Solanum lycopersicum/parasitologia , Dados de Sequência Molecular , Nematoides/imunologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Folhas de Planta/imunologia , Folhas de Planta/parasitologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/imunologia , Plantas Geneticamente Modificadas/parasitologia , Potexvirus/imunologia , Potexvirus/patogenicidade , Mapeamento de Interação de Proteínas , Proteínas/genética , Transdução de Sinais , Solanum tuberosum/imunologia , Solanum tuberosum/parasitologia , Nicotiana/genética , Nicotiana/imunologia , Nicotiana/parasitologia , Transformação Genética , Verticillium/imunologia , Verticillium/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...