Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 287(2): 1436-47, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22065576

RESUMO

In Drosophila, a phospholipase C (PLC)-mediated signaling cascade, couples photo-excitation of rhodopsin to the opening of the transient receptor potential (TRP) and TRP-like (TRPL) channels. A lipid product of PLC, diacylglycerol (DAG), and its metabolites, polyunsaturated fatty acids (PUFAs) may function as second messengers of channel activation. However, how can one separate between the increase in putative second messengers, change in pH, and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) depletion when exploring the TRPL gating mechanism? To answer this question we co-expressed the TRPL channels together with the muscarinic (M1) receptor, enabling the openings of TRPL channels via G-protein activation of PLC. To dissect PLC activation of TRPL into its molecular components, we used a powerful method that reduced plasma membrane-associated PI(4,5)P(2) in HEK cells within seconds without activating PLC. Upon the addition of a dimerizing drug, PI(4,5)P(2) was selectively hydrolyzed in the cell membrane without producing DAG, inositol trisphosphate, or calcium signals. We show that PI(4,5)P(2) is not an inhibitor of TRPL channel activation. PI(4,5)P(2) hydrolysis combined with either acidification or application of DAG analogs failed to activate the channels, whereas PUFA did activate the channels. Moreover, a reduction in PI(4,5)P(2) levels or inhibition of DAG lipase during PLC activity suppressed the PLC-activated TRPL current. This suggests that PI(4,5)P(2) is a crucial substrate for PLC-mediated activation of the channels, whereas PUFA may function as the channel activator. Together, this study defines a narrow range of possible mechanisms for TRPL gating.


Assuntos
Proteínas de Drosophila/metabolismo , Ativação do Canal Iônico/fisiologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Transdução de Sinais/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Membrana Celular , Diglicerídeos/genética , Diglicerídeos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Ativação Enzimática , Ácidos Graxos Insaturados/genética , Ácidos Graxos Insaturados/metabolismo , Células HEK293 , Humanos , Fosfatidilinositol 4,5-Difosfato/genética , Canais de Potencial de Receptor Transitório/genética , Fosfolipases Tipo C/genética
2.
J Biol Chem ; 286(39): 34234-43, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21816824

RESUMO

In Drosophila photoreceptors the transient receptor potential-like (TRPL), but not the TRP channels undergo light-dependent translocation between the rhabdomere and cell body. Here we studied which of the TRPL channel segments are essential for translocation and why the TRP channels are required for inducing TRPL translocation. We generated transgenic flies expressing chimeric TRP and TRPL proteins that formed functional light-activated channels. Translocation was induced only in chimera containing both the N- and C-terminal segments of TRPL. Using an inactive trp mutation and overexpressing the Na(+)/Ca(2+) exchanger revealed that the essential function of the TRP channels in TRPL translocation is to enhance Ca(2+)-influx. These results indicate that motifs present at both the N and C termini as well as sustained Ca(2+) entry are required for proper channel translocation.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Transporte de Íons/fisiologia , Mutação , Organismos Geneticamente Modificados , Estrutura Terciária de Proteína , Sódio/metabolismo , Canais de Potencial de Receptor Transitório/genética
3.
J Neurosci ; 29(8): 2371-83, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19244513

RESUMO

Open channel block is a process in which ions bound to the inside of a channel pore block the flow of ions through that channel. Repulsion of the blocking ions by depolarization is a known mechanism of open channel block removal. For the NMDA channel, this mechanism is necessary for channel activation and is involved in neuronal plasticity. Several types of transient receptor potential (TRP) channels, including the Drosophila TRP and TRP-like (TRPL) channels, also exhibit open channel block. Therefore, removal of open channel block is necessary for the production of the physiological response to light. Because there is no membrane depolarization before the light response develops, it is not clear how the open channel block is removed, an essential step for the production of a robust light response under physiological conditions. Here we present a novel mechanism to alleviate open channel block in the absence of depolarization by membrane lipid modulations. The results of this study show open channel block removal by membrane lipid modulations in both TRPL and NMDA channels of the photoreceptor cells and CA1 hippocampal neurons, respectively. Removal of open channel block is characterized by an increase in the passage-rate of the blocking cations through the channel pore. We propose that the profound effect of membrane lipid modulations on open channel block alleviation, allows the productions of a robust current in response to light in the absence of depolarization.


Assuntos
Ativação do Canal Iônico/efeitos dos fármacos , Lipídeos de Membrana/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Canais de Potencial de Receptor Transitório/fisiologia , Animais , Animais Geneticamente Modificados , Biofísica , Cálcio/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Estimulação Elétrica , Proteínas de Fluorescência Verde/genética , Hipocampo/citologia , Técnicas In Vitro , Ativação do Canal Iônico/genética , Ativação do Canal Iônico/fisiologia , Luz , Ácido Linoleico/farmacologia , Magnésio/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Mutação/genética , N-Metilaspartato/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp/métodos , Células Fotorreceptoras de Invertebrados/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/genética , Canais de Potencial de Receptor Transitório/genética
4.
J Neurosci ; 27(21): 5571-83, 2007 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-17522302

RESUMO

Light adaptation is a process that enables photoreceptor cells to operate over a wide range of light intensities without saturation. In invertebrate photoreceptors, fast adaptation is mediated by a Ca2+-dependent negative-feedback mechanism, which mainly affects the terminal steps of the cascade. Therefore, the response to each photon is smaller as light intensity increases, accommodating both high sensitivity and a vast dynamic range. Here, we describe a novel type of adaptation, which is mediated by one of the first steps in the phototransduction cascade affecting the sensitivity to absorbed photons. Long exposure to light resulted in dramatic reduction in the probability of each absorbed photon to elicit a response, whereas the size and shape of each single photon response did not change. To dissect the molecular mechanism underlying this form of adaptation we used a series of Drosophila mutants. Genetic dissection showed a pivotal role for light-induced translocation of Gq alpha between the signaling membrane and the cytosol. Biochemical studies revealed that the sensitivity to light depends on membrane Gq alpha concentration, which was modulated either by light or by mutations that impaired its targeting to the membrane. We conclude that long-term adaptation is mediated by the movement of Gq alpha from the signaling membrane to the cytosol, thereby reducing the probability of each photon to elicit a response. The slow time scale of this adaptation fits well with day/night light intensity changes, because there is no need to maintain single photon sensitivity during daytime.


Assuntos
Adaptação Ocular , Proteínas de Drosophila/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Células Fotorreceptoras de Invertebrados/metabolismo , Adaptação Ocular/genética , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/fisiologia , Mutação , Estimulação Luminosa/métodos , Células Fotorreceptoras de Invertebrados/fisiologia , Transporte Proteico/genética , Fatores de Tempo
5.
J Cell Biol ; 171(1): 143-52, 2005 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-16216927

RESUMO

Recent studies in Drosophila melanogaster retina indicate that absorption of light causes the translocation of signaling molecules and actin from the photoreceptor's signaling membrane to the cytosol, but the underlying mechanisms are not fully understood. As ezrin-radixin-moesin (ERM) proteins are known to regulate actin-membrane interactions in a signal-dependent manner, we analyzed the role of Dmoesin, the unique D. melanogaster ERM, in response to light. We report that the illumination of dark-raised flies triggers the dissociation of Dmoesin from the light-sensitive transient receptor potential (TRP) and TRP-like channels, followed by the migration of Dmoesin from the membrane to the cytoplasm. Furthermore, we show that light-activated migration of Dmoesin results from the dephosphorylation of a conserved threonine in Dmoesin. The expression of a Dmoesin mutant form that impairs this phosphorylation inhibits Dmoesin movement and leads to light-induced retinal degeneration. Thus, our data strongly suggest that the light- and phosphorylation-dependent dynamic association of Dmoesin to membrane channels is involved in maintenance of the photoreceptor cells.


Assuntos
Proteínas de Drosophila/metabolismo , Luz , Proteínas de Membrana/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Membrana Celular/química , Citosol/química , Proteínas de Membrana/genética , Modelos Moleculares , Mutação , Fosforilação , Células Fotorreceptoras de Invertebrados/metabolismo , Células Fotorreceptoras de Invertebrados/efeitos da radiação , Transporte Proteico/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...