Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurorobot ; 17: 1187264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37680349

RESUMO

Introduction: Teleoperated robotic manipulators allow us to bring human dexterity and cognition to hard-to-reach places on Earth and in space. In long-distance teleoperation, however, the limits of the speed of light results in an unavoidable and perceivable signal delay. The resultant disconnect between command, action, and feedback means that systems often behave unexpectedly, reducing operators' trust in their systems. If we are to widely adopt telemanipulation technology in high-latency applications, we must identify and specify what would make these systems trustworthy. Methods: In this requirements elicitation study, we present the results of 13 interviews with expert operators of remote machinery from four different application areas-nuclear reactor maintenance, robot-assisted surgery, underwater exploration, and ordnance disposal-exploring which features, techniques, or experiences lead them to trust their systems. Results: We found that across all applications, except for surgery, the top-priority requirement for developing trust is that operators must have a comprehensive engineering understanding of the systems' capabilities and limitations. The remaining requirements can be summarized into three areas: improving situational awareness, facilitating operator training, and familiarity, and easing the operator's cognitive load. Discussion: While the inclusion of technical features to assist the operators was welcomed, these were given lower priority than non-technical, user-centric approaches. The signal delays in the participants' systems ranged from none perceived to 1 min, and included examples of successful dexterous telemanipulation for maintenance tasks with a 2 s delay. As this is comparable to Earth-to-orbit and Earth-to-Moon delays, the requirements discussed could be transferable to telemanipulation tasks in space.

2.
J Particip Med ; 15: e42704, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37010907

RESUMO

BACKGROUND: In the United Kingdom, women aged 50 to 70 years are invited to undergo mammography. However, 10% of invasive breast cancers occur in women aged ≤45 years, representing an unmet need for young women. Identifying a suitable screening modality for this population is challenging; mammography is insufficiently sensitive, whereas alternative diagnostic methods are invasive or costly. Robotic clinical breast examination (R-CBE)-using soft robotic technology and machine learning for fully automated clinical breast examination-is a theoretically promising screening modality with early prototypes under development. Understanding the perspectives of potential users and partnering with patients in the design process from the outset is essential for ensuring the patient-centered design and implementation of this technology. OBJECTIVE: This study investigated the attitudes and perspectives of women regarding the use of soft robotics and intelligent systems in breast cancer screening. It aimed to determine whether such technology is theoretically acceptable to potential users and identify aspects of the technology and implementation system that are priorities for patients, allowing these to be integrated into technology design. METHODS: This study used a mixed methods design. We conducted a 30-minute web-based survey with 155 women in the United Kingdom. The survey comprised an overview of the proposed concept followed by 5 open-ended questions and 17 closed questions. Respondents were recruited through a web-based survey linked to the Cancer Research United Kingdom patient involvement opportunities web page and distributed through research networks' mailing lists. Qualitative data generated via the open-ended questions were analyzed using thematic analysis. Quantitative data were analyzed using 2-sample Kolmogorov-Smirnov tests, 1-tailed t tests, and Pearson coefficients. RESULTS: Most respondents (143/155, 92.3%) indicated that they would definitely or probably use R-CBE, with 82.6% (128/155) willing to be examined for up to 15 minutes. The most popular location for R-CBE was at a primary care setting, whereas the most accepted method for receiving the results was an on-screen display (with an option to print information) immediately after the examination. Thematic analysis of free-text responses identified the following 7 themes: women perceive that R-CBE has the potential to address limitations in current screening services; R-CBE may facilitate increased user choice and autonomy; ethical motivations for supporting R-CBE development; accuracy (and users' perceptions of accuracy) is essential; results management with clear communication is a priority for users; device usability is important; and integration with health services is key. CONCLUSIONS: There is a high potential for the acceptance of R-CBE in its target user group and a high concordance between user expectations and technological feasibility. Early patient participation in the design process allowed the authors to identify key development priorities for ensuring that this new technology meets the needs of users. Ongoing patient and public involvement at each development stage is essential.

3.
Sensors (Basel) ; 23(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36679363

RESUMO

Optimising the sensitivity of a tactile sensor to a specific range of stimuli magnitude usually compromises the sensor's widespread usage. This paper presents a novel soft tactile sensor capable of dynamically tuning its stiffness for enhanced sensitivity across a range of applied forces, taking inspiration from the Eustachian tube in the mammalian ear. The sensor exploits an adjustable pneumatic back pressure to control the effective stiffness of its 20 mm diameter elastomer interface. An internally translocated fluid is coupled to the membrane and optically tracked to measure physical interactions at the interface. The sensor can be actuated by pneumatic pressure to dynamically adjust its stiffness. It is demonstrated to detect forces as small as 0.012 N, and to be sensitive to a difference of 0.006 N in the force range of 35 to 40 N. The sensor is demonstrated to be capable of detecting tactile cues on the surface of objects in the sub-millimetre scale. It is able to adapt its compliance to increase its ability for distinguishing between stimuli with similar stiffnesses (0.181 N/mm difference) over a large range (0.1 to 1.1 N/mm) from only a 0.6 mm deep palpation. The sensor is intended to interact comfortably with skin, and the feasibility of its use in palpating tissue in search of hard inclusions is demonstrated by locating and estimating the size of a synthetic hard node embedded 20 mm deep in a soft silicone sample. The results suggest that the sensor is a good candidate for tactile tasks involving unpredictable or unknown stimuli.


Assuntos
Silicones , Tato , Animais , Desenho de Equipamento , Mamíferos
4.
Front Robot AI ; 8: 672315, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34277716

RESUMO

Soft tactile sensors are an attractive solution when robotic systems must interact with delicate objects in unstructured and obscured environments, such as most medical robotics applications. The soft nature of such a system increases both comfort and safety, while the addition of simultaneous soft active actuation provides additional features and can also improve the sensing range. This paper presents the development of a compact soft tactile sensor which is able to measure the profile of objects and, through an integrated pneumatic system, actuate and change the effective stiffness of its tactile contact surface. We report experimental results which demonstrate the sensor's ability to detect lumps on the surface of objects or embedded within a silicone matrix. These results show the potential of this approach as a versatile method of tactile sensing with potential application in medical diagnosis.

5.
Front Robot AI ; 6: 56, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33501071

RESUMO

A new algorithm is proposed to estimate the tool-tissue force interaction in robot-assisted minimally invasive surgery which does not require the use of external force sensing. The proposed method utilizes the current of the motors of the surgical instrument and neural network methods to estimate the force interaction. Offline and online testing is conducted to assess the feasibility of the developed algorithm. Results showed that the developed method has promise in allowing online estimation of tool-tissue force and could thus enable haptic feedback in robotic surgery to be provided.

6.
Front Robot AI ; 5: 62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33500941

RESUMO

This paper presents the development of a wearable Fingertip Haptic Device (FHD) that can provide cutaneous feedback via a Variable Compliance Platform (VCP). The FHD includes an inertial measurement unit, which tracks the motion of the user's finger while its haptic functionality relies on two parameters: pressure in the VCP and its linear displacement towards the fingertip. The combination of these two features results in various conditions of the FHD, which emulate the remote object or surface stiffness properties. Such a device can be used in tele-operation, including virtual reality applications, where rendering the level of stiffness of different physical or virtual materials could provide a more realistic haptic perception to the user. The FHD stiffness representation is characterised in terms of resulting pressure and force applied to the fingertip created through the relationship of the two functional parameters - pressure and displacement of the VCP. The FHD was tested in a series of user studies to assess its potential to create a user perception of the object's variable stiffness. The viability of the FHD as a haptic device has been further confirmed by interfacing the users with a virtual environment. The developed virtual environment task required the users to follow a virtual path, identify objects of different hardness on the path and navigate away from "no-go" zones. The task was performed with and without the use of the variable compliance on the FHD. The results showed improved performance with the presence of the variable compliance provided by the FHD in all assessed categories and particularly in the ability to identify correctly between objects of different hardness.

7.
Int J Med Robot ; 10(3): 368-78, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24127331

RESUMO

BACKGROUND: Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods, such as robot-assisted minimally invasive surgery (MIS). This study aimed to investigate and discuss the needs of MIS in terms of instrumentation and to inform the design of a novel instrument. METHODS: A survey was conducted among surgeons regarding their opinions on surgical training, surgical systems, how satisfied they were with them and how easy they were to use. A concept for MIS robotic instrumentation was then developed and a series of focus groups with surgeons were run to discuss it. The initial prototype of the robotic instruments, herein demonstrated, comprises modular rigid links with soft joints actuated by shape memory alloy helix actuators; these instruments are controlled using a sensory hand exoskeleton. RESULTS: The results of the survey, as well as those of the focus groups, are presented here. A first prototype of the system was built and initial laboratory tests have been conducted in order to evaluate this approach. CONCLUSIONS: The analysed data from both the survey and the focus groups justify the chosen concept of an anthropomorphic MIS robotic system which imitates the natural motion of the hands.


Assuntos
Cirurgia Geral/instrumentação , Laparoscopia/instrumentação , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Ligas/química , Antropometria , Desenho de Equipamento , Grupos Focais , Humanos , Laparoscopia/métodos , Aprendizagem , Robótica/métodos , Cirurgia Assistida por Computador/métodos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...