Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2311937, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529743

RESUMO

Achieving reliable and quantifiable performance in large-area surface-enhanced Raman spectroscopy (SERS) substrates poses a formidable challenge, demanding signal enhancement while ensuring response uniformity and reproducibility. Conventional SERS substrates often made of inhomogeneous materials with random resonator geometries, resulting in multiple or broadened plasmonic resonances, undesired absorptive losses, and uneven field enhancement. These limitations hamper reproducibility, making it difficult to conduct comparative studies with high sensitivity. This study introduces an innovative approach that addresses these challenges by utilizing monocrystalline gold flakes to fabricate well-defined plasmonic double-wire resonators through focused ion-beam lithography. Inspired by biological strategy, the double-wire grating substrate (DWGS) geometry is evolutionarily optimized to maximize the SERS signal by enhancing both excitation and emission processes. The use of monocrystalline material minimizes absorption losses and ensures shape fidelity during nanofabrication. DWGS demonstrates notable reproducibility (RSD = 6.6%), repeatability (RSD = 5.6%), and large-area homogeneity > 104 µm2. It provides a SERS enhancement for sub-monolayer coverage detection of 4-Aminothiophenol analyte. Furthermore, DWGS demonstrates reusability, long-term stability on the shelf, and sustained analyte signal stability over time. Validation with diverse analytes, across different states of matter, including biological macromolecules, confirms the sensitive and reproducible nature of DWGSs, thereby establishing them as a promising platform for future sensing applications.

2.
Front Nutr ; 10: 1059078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275635

RESUMO

Introduction: During the 20th century, the worldwide genetic diversity of wheat was sharply eroded by continual selection for high yields and industry demands for particular standardized qualities. A collection of Israeli and Palestinian landraces (IPLR) was established to represent genetic diversity, accumulated for ten millennia under diverse environments, which was mostly lost in this transition. As our long-term goal is to study this pre- Green Revolution genetic reservoir, herein we focus on its flour and bread quality and sensorial attributes. Methods: Initially, a database was built for the entire IPLR collection (n=901) holding both Triticum durum (durum wheat) and T. aestivum (bread wheat) which included genetic and phenotypic characterization of agronomic traits, grain and flour quality. Then, a representative subset of the IPLR was selected and compared to modern varieties for dough quality, rheology, aroma and taste using both whole and refined flours and breads. The sensory panel used 40 subjects who evaluated common protocol or sourdough breads made by four artisan bakers. Results: Results show modern durum cultivar C-9 had superior rheological properties (gluten index, elasticity, dough development time) as compared with landraces, while bread landrace 'Diar Alla' was markedly preferable for baking in relation to the modern cultivar Gadish. Baking tests and subsequent sensory evaluation clearly demonstrated a preference toward refined breads, apart from whole breads prepared using sourdough starters. In bread wheat, loaves baked using landrace flour were scored higher in several quality parameters, whereas in durum lines, the opposite trend was evident. Loaves baked from landraces 'Diar Alla' and to a lesser extent 'Hittia Soada' presented a markedly different aroma from the control loaves prepared from modern flours, both in terms of overall compositions and individual compounds, including classes such as pyranones, pyrazines, furans and pyrroles (maltol). Modern lines, on the other hand, were consistently richer in terpenes and phenylpropanoids. Further analysis demonstrated a significant association between specific aroma classes and sensory attributes scored by panelists. Discussion: The findings of the study may help advance new niches in the local wheat market aimed at health and nutrition including adapting durum varieties to the bread market and developing flavor-enhanced wholemeal breads.

3.
Plant Biotechnol J ; 21(4): 754-768, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577653

RESUMO

RNA interference (RNAi)-based technologies are starting to be commercialized as a new approach for agricultural pest control. Horizontally transferred genes (HTGs), which have been transferred into insect genomes from viruses, bacteria, fungi or plants, are attractive targets for RNAi-mediated pest control. HTGs are often unique to a specific insect family or even genus, making it unlikely that RNAi constructs targeting such genes will have negative effects on ladybugs, lacewings and other beneficial predatory insect species. In this study, we sequenced the genome of a red, tobacco-adapted isolate of Myzus persicae (green peach aphid) and bioinformatically identified 30 HTGs. We then used plant-mediated virus-induced gene silencing (VIGS) to show that several HTGs of bacterial and plant origin are important for aphid growth and/or survival. Silencing the expression of fungal-origin HTGs did not affect aphid survivorship but decreased aphid reproduction. Importantly, although there was uptake of plant-expressed RNA by Coccinella septempunctata (seven-spotted ladybugs) via the aphids that they consumed, we did not observe negative effects on ladybugs from aphid-targeted VIGS constructs. To demonstrate that this approach is more broadly applicable, we also targeted five Bemisia tabaci (whitefly) HTGs using VIGS and demonstrated that knockdown of some of these genes affected whitefly survival. As functional HTGs have been identified in the genomes of numerous pest species, we propose that these HTGs should be explored further as efficient and safe targets for control of insect pests using plant-mediated RNA interference.


Assuntos
Afídeos , Animais , Afídeos/genética , Interferência de RNA , Plantas Geneticamente Modificadas/genética , Sequência de Bases , Nicotiana/genética
4.
Insects ; 13(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135541

RESUMO

The whitefly Bemisia tabaci is one of the most important agricultural pests due to its extreme invasiveness, insecticide resistance, and ability to transmit hundreds of plant viruses. Among these, Begomoviruses and recombinant whitefly-borne Poleroviruses are transmitted persistently. Several studies have shown that upon infection, plant viruses manipulate plant-emitted volatile organic compounds (VOCs), which have important roles in communication with insects. In this study, we profiled and compared the VOCs emitted by tomato and pepper plant leaves after infection with the Tomato yellow leaf curl virus (TYLCV) (Bogomoviruses) and the newly discovered Pepper whitefly-borne vein yellows virus (PeWBVYV) (Poleroviruses), respectively. The results identified shared emitted VOCs but also uncovered unique VOC signatures for each virus and for whitefly infestation (i.e., without virus infection) independently. The results suggest that plants have general defense responses; however, they are also able to respond individually to infection with specific viruses or infestation with an insect pest. The results are important to enhance our understanding of virus- and insect vector-induced alteration in the emission of plant VOCs. These volatiles can eventually be used for the management of virus diseases/insect vectors by either monitoring or disrupting insect-plant interactions.

5.
J Exp Bot ; 73(16): 5634-5649, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35554544

RESUMO

Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.


Assuntos
Afídeos , Triticum , Animais , Afídeos/fisiologia , Benzoxazinas/metabolismo , Vias Biossintéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/genética , Triticum/metabolismo , Zea mays/metabolismo
6.
Plant Sci ; 316: 111171, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151455

RESUMO

Benzoxazinoids are plant specialized metabolites with defense properties, highly abundant in wheat (Triticum), one of the world's most important crops. The goal of our study was to characterize dioxygenase BX6 genes in tetraploid and hexaploid wheat genotypes and to elucidate their effects on defense against herbivores. Phylogenetic analysis revealed four BX6 genes in the hexaploid wheat T. aestivum, but only one ortholog was found in the tetraploid (T. turgidum) wild emmer wheat and the cultivated durum wheat. Transcriptome sequencing of durum wheat plants, damaged by either aphids or caterpillars, revealed that several BX genes, including TtBX6, were upregulated upon caterpillar feeding, relative to the undamaged control plants. A virus-induced gene silencing approach was used to reduce the expression of BX6 in T. aestivum plants, which exhibited both reduced transcript levels and reduced accumulation of different benzoxazinoids. To elucidate the effect of BX6 on plant defense, bioassays with different herbivores feeding on BX6-silenced leaves were conducted. The results showed that plants with silenced BX6 were more susceptible to aphids and the two-spotted spider mite than the control. Overall, our study indicates that wheat BX6 is involved in benzoxazinoid formation in planta and contributes to plant resistance against insect herbivores.


Assuntos
Afídeos , Dioxigenases , Proteínas de Plantas , Triticum , Animais , Benzoxazinas , Dioxigenases/genética , Herbivoria , Filogenia , Triticum/genética
7.
Plant Mol Biol ; 109(4-5): 533-549, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35020104

RESUMO

KEY MESSAGE: A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.


Assuntos
Afídeos , Setaria (Planta) , Animais , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Descarboxilases de Aminoácido-L-Aromático/farmacologia , Folhas de Planta/genética , Serotonina/metabolismo , Serotonina/farmacologia , Setaria (Planta)/genética
8.
Front Plant Sci ; 12: 667820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262579

RESUMO

The bird cherry-oat aphid (Rhopalosiphum padi) is one of the most destructive insect pests in wheat production. To reduce aphid damage, wheat plants have evolved various chemical and physical defense mechanisms. Although these mechanisms have been frequently reported, much less is known about their effectiveness. The tetraploid wild emmer wheat (WEW; Triticum turgidum ssp. dicoccoides), one of the progenitors of domesticated wheat, possesses untapped resources from its numerous desirable traits, including insect resistance. The goal of this research was to determine the effectiveness of trichomes (physical defense) and benzoxazinoids (BXDs; chemical defense) in aphid resistance by exploiting the natural diversity of WEW. We integrated a large dataset composed of trichome density and BXD abundance across wheat genotypes, different leaf positions, conditions (constitutive and aphid-induced), and tissues (whole leaf and phloem sap). First, we evaluated aphid reproduction on 203 wheat accessions and found large variation in this trait. Then, we chose eight WEW genotypes and one domesticated durum wheat cultivar for detailed quantification of the defense mechanisms across three leaves. We discovered that these defense mechanisms are influenced by both leaf position and genotype, where aphid reproduction was the highest on leaf-1 (the oldest), and trichome density was the lowest. We compared the changes in trichome density and BXD levels upon aphid infestation and found only minor changes relative to untreated plants. This suggests that the defense mechanisms in the whole leaf are primarily anticipatory and unlikely to contribute to aphid-induced defense. Next, we quantified BXD levels in the phloem sap and detected a significant induction of two compounds upon aphid infestation. Moreover, evaluating aphid feeding patterns showed that aphids prefer to feed on the oldest leaf. These findings revealed the dynamic response at the whole leaf and phloem levels that altered aphid feeding and reproduction. Overall, they suggested that trichomes and the BXD 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA) levels are the main factors determining aphid resistance, while trichomes are more effective than BXDs. Accessions from the WEW germplasm, rich with trichomes and BXDs, can be used as new genetic sources to improve the resistance of elite wheat cultivars.

9.
Plant Cell Environ ; 44(8): 2656-2671, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33715174

RESUMO

A key facet of floral scent is diel fluctuations in emission, often studied in the context of plant-pollinator interactions, while contributions of environment and phylogeny remain overlooked. Here, we ask if these factors are involved in shaping temporal variations in scent emission. To that end, we coupled light/dark floral emission measurements of 17 desert Brassicaceae species with environmental and phylogenetic data to explore the individual/combined impacts of these predictors on diel emission patterns. We further investigated these patterns by conducting high-resolution emission measurements in a subset of genetically distant species with contrasting temporal dynamics. While diel shifts in magnitude and richness of emission were strongly affected by genetic relatedness, they also reflect the environmental conditions under which the species grow. Specifically, light/dark emission ratios were negatively affected by an increase in winter temperatures, known to impact both plant physiology and insect locomotion, and sandy soil fractions, previously shown to exert stress that tempers with diel metabolic rhythms. Additionally, the biosynthetic origins of the compounds were associated with their corresponding production patterns, possibly to maximize emission efficacy. Using a multidisciplinary chemical/ecological approach, we uncover and differentiate the main factors shaping floral scent diel fluctuations, highlighting their consequences under changing global climate.


Assuntos
Brassicaceae/química , Brassicaceae/fisiologia , Flores/fisiologia , Filogenia , Compostos Orgânicos Voláteis/metabolismo , Animais , Brassicaceae/genética , Escuridão , Clima Desértico , Flores/química , Cromatografia Gasosa-Espectrometria de Massas , Insetos , Israel , Luz , Proteínas de Plantas/genética , Polinização , Proteínas Ribossômicas/genética , Compostos Orgânicos Voláteis/análise
10.
Front Plant Sci ; 12: 630155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33719301

RESUMO

The two-spotted spider mite (TSSM; Tetranychus urticae) is a ubiquitous polyphagous arthropod pest that has a major economic impact on the tomato (Solanum lycopersicum) industry. Tomato plants have evolved broad defense mechanisms regulated by the expression of defense genes, phytohormones, and secondary metabolites present constitutively and/or induced upon infestation. Although tomato defense mechanisms have been studied for more than three decades, only a few studies have compared domesticated cultivars' natural mite resistance at the molecular level. The main goal of our research was to reveal the molecular differences between two tomato cultivars with similar physical (trichome morphology and density) and agronomic traits (fruit size, shape, color, cluster architecture), but with contrasting TSSM susceptibility. A net house experiment indicated a mite-resistance difference between the cultivars, and a climate-controlled performance and oviposition bioassay supported these findings. A transcriptome analysis of the two cultivars after 3 days of TSSM infestation, revealed changes in the genes associated with primary and secondary metabolism, including salicylic acid and volatile biosynthesis (volatile benzenoid ester and monoterpenes). The Terpene synthase genes, TPS5, TPS7, and TPS19/20, encoding enzymes that synthesize the monoterpenes linalool, ß-myrcene, limonene, and ß-phellandrene were highly expressed in the resistant cultivar. The volatile profile of these cultivars upon mite infestation for 1, 3, 5, and 7 days, revealed substantial differences in monoterpenoid and phenylpropanoid volatiles, results consistent with the transcriptomic data. Comparing the metabolic changes that occurred in each cultivar and upon mite-infestation indicated that monoterpenes are the main metabolites that differ between cultivars (constitutive levels), while only minor changes occurred upon TSSM attack. To test the effect of these volatile variations on mites, we subjected both the TSSM and its corresponding predator, Phytoseiulus persimilis, to an olfactory choice bioassay. The predator mites were only significantly attracted to the TSSM pre-infested resistant cultivar and not to the susceptible cultivar, while the TSSM itself showed no preference. Overall, our findings revealed the contribution of constitutive and inducible levels of volatiles on mite performance. This study highlights monoterpenoids' function in plant resistance to pests and may inform the development of new resistant tomato cultivars.

11.
Front Plant Sci ; 11: 598483, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363559

RESUMO

Tef (Eragrostis tef), a staple crop that originated in the Horn of Africa, has been introduced to multiple countries over the last several decades. Crop cultivation in new geographic regions raises questions regarding the molecular basis for biotic stress responses. In this study, we aimed to classify the insect abundance on tef crop in Israel, and to elucidate its chemical and physical defense mechanisms in response to insect feeding. To discover the main pests of tef in the Mediterranean climate, we conducted an insect field survey on three selected accessions named RTC-144, RTC-405, and RTC-406, and discovered that the most abundant insect order is Hemiptera. We compared the differences in Rhopalosiphum padi (Hemiptera; Aphididae) aphid performance, preference, and feeding behavior between the three accessions. While the number of aphid progeny was lower on RTC-406 than on the other two, the aphid olfactory assay indicated that the aphids tended to be repelled from the RTC-144 accession. To highlight the variation in defense responses, we investigated the physical and chemical mechanisms. As a physical barrier, the density of non-granular trichomes was evaluated, in which a higher number of trichomes on the RTC-406 than on the other accessions was observed. This was negatively correlated with aphid performance. To determine chemical responses, the volatile and central metabolite profiles were measured upon aphid attack for 4 days. The volatile analysis exposed a rich and dynamic metabolic profile, and the central metabolism profile indicated that tef plants adjust their sugars and organic and amino acid levels. Overall, we found that the tef plants possess similar defense responses as other Poaceae family species, while the non-volatile deterrent compounds are yet to be characterized. A transcriptomic time-series analysis of a selected accession RTC-144 infested with aphids revealed a massive alteration of genes related to specialized metabolism that potentially synthesize non-volatile toxic compounds. This is the first report to reveal the variation in the defense mechanisms of tef plants. These findings can facilitate the discovery of insect-resistance genes leading to enhanced yield in tef and other cereal crops.

12.
PeerJ ; 8: e9142, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32518724

RESUMO

BACKGROUND: Wheat is a staple crop that suffers from massive yield losses caused by cereal aphids. Many factors can determine the abundance of cereal aphids and the damage they cause to plants; among them are the plant's genetic background, as well as environmental conditions such as spatial position within the plot, the composition and the distance from neighboring vegetation. Although the effects of these factors have been under scrutiny for many years, the combined effect of both factors on aphid populations is not fully understood. The goal of this study was to examine the collective impact of genotype and environment on wheat phenology (developmental stages), chemical diversity (metabolites), and insect susceptibility, as manifested by cereal aphid abundance. METHODS: To determine the influence of plant genotype on the metrics mentioned above, we measured the phenology, chemical profile, and aphid abundance of four wheat genotypes, including the tetraploid wild emmer (Triticum turgidum ssp. dicoccoides cv. Zavitan), tetraploid durum (Triticum turgidum ssp. durum cv. Svevo), and two hexaploid spring bread (Triticum aestivum), 'Rotem' and 'Chinese Spring'. These genotypes are referred to as "focal" plants. To evaluate the impact of the environment, we scored the distance of each focal plant (spatial position) from two neighboring vegetation types: (i) natural resource and (ii) monoculture wheat resource. RESULTS: The results demonstrated that the wild emmer wheat was the most aphid-resistant, while the bread wheat Rotem was most aphid-susceptible. Aphids were more abundant in plants that matured early. The spatial position analysis demonstrated that aphids were more abundant in focal plants located closer to the margin monoculture wheat resource rather than to the natural resource, suggesting a resource concentration effect. The analysis of metabolic diversity showed that the levels of three specialized metabolites from the flavonoid class, differed between the wheat genotypes and some minor changes in central metabolites were shown as well. Altogether, these results demonstrate a combined effect of genetic background and spatial position on wheat phenology and aphid abundance on plants. This exposes the potential role of the marginal vegetation environment in shaping the insect population of desirable crops. These findings highlight the importance of maintaining plant intra-specific variation in the agriculture system because of its potential applications in reducing pest density.

13.
Plant J ; 103(6): 2236-2249, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32593184

RESUMO

Advancements in -omics techniques provide powerful tools to assess the potential effects in composition of a plant at the RNA, protein and metabolite levels. These technologies can thus be deployed to assess whether genetic engineering (GE) causes changes in plants that go beyond the changes introduced by conventional plant breeding. Here, we compare the extent of transcriptome and metabolome modification occurring in leaves of four GE rice lines expressing Bacillus thuringiensis genes developed by GE and seven rice lines developed by conventional cross-breeding. The results showed that both types of crop breeding methods can bring changes at transcriptomic and metabolic levels, but the differences were comparable between the two methods, and were less than those between conventional non-GE lines were. Metabolome profiling analysis found several new metabolites in GE rice lines when compared with the closest non-GE parental lines, but these compounds were also found in several of the conventionally bred rice lines. Functional analyses suggest that the differentially expressed genes and metabolites caused by both GE and conventional cross-breeding do not involve detrimental metabolic pathways. The study successfully employed RNA-sequencing and high-performance liquid chromatography mass spectrometry technology to assess the unintended changes in new rice varieties, and the results suggest that GE does not cause unintended effects that go beyond conventional cross-breeding in rice.


Assuntos
Engenharia Genética/métodos , Oryza/genética , Melhoramento Vegetal/métodos , Bacillus thuringiensis/genética , Engenharia Genética/efeitos adversos , Metabolômica , Plantas Geneticamente Modificadas/efeitos adversos , Plantas Geneticamente Modificadas/genética , Transcriptoma/genética
14.
BMC Plant Biol ; 20(1): 19, 2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31931716

RESUMO

BACKGROUND: Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS: In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS: Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.


Assuntos
Afídeos/fisiologia , Benzoxazinas/metabolismo , Imunidade Vegetal/genética , Triticum/genética , Animais , Domesticação , Perfilação da Expressão Gênica , Genótipo , Herbivoria , Metabolômica , Imunidade Vegetal/fisiologia , Tricomas/anatomia & histologia , Triticum/imunologia
15.
Metabolomics ; 15(6): 85, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31144047

RESUMO

INTRODUCTION: Triterpene saponins are important bioactive plant natural products found in many plant families including the Leguminosae. OBJECTIVES: We characterize two Medicago truncatula cytochrome P450 enzymes, MtCYP72A67 and MtCYP72A68, involved in saponin biosynthesis including both in vitro and in planta evidence. METHODS: UHPLC-(-)ESI-QToF-MS was used to profile saponin accumulation across a collection of 106 M. truncatula ecotypes. The profiling results identified numerous ecotypes with high and low saponin accumulation in root and aerial tissues. Four ecotypes with significant differential saponin content in the root and/or aerial tissues were selected, and correlated gene expression profiling was performed. RESULTS: Correlation analyses between gene expression and saponin accumulation revealed high correlations between saponin content with gene expression of ß-amyrin synthase, MtCYP716A12, and two cytochromes P450 genes, MtCYP72A67 and MtCYP72A68. In vivo and in vitro biochemical assays using yeast microsomes containing MtCYP72A67 revealed hydroxylase activity for carbon 2 of oleanolic acid and hederagenin. This finding was supported by functional characterization of MtCYP72A67 using RNAi-mediated gene silencing in M. truncatula hairy roots, which revealed a significant reduction of 2ß-hydroxylated sapogenins. In vivo and in vitro assays with MtCYP72A68 produced in yeast showed multifunctional oxidase activity for carbon 23 of oleanolic acid and hederagenin. These findings were supported by overexpression of MtCYP72A68 in M. truncatula hairy roots, which revealed significant increases of oleanolic acid, 2ß-hydroxyoleanolic acid, hederagenin and total saponin levels. CONCLUSIONS: The cumulative data support that MtCYP72A68 is a multisubstrate, multifunctional oxidase and MtCYP72A67 is a 2ß-hydroxylase, both of which function during the early steps of triterpene-oleanate sapogenin biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Sapogeninas/metabolismo , Vias Biossintéticas , Cromatografia Líquida de Alta Pressão/métodos , Sistema Enzimático do Citocromo P-450/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Medicago truncatula/genética , Metabolômica/métodos , Proteínas de Plantas/genética , Espectrometria de Massas por Ionização por Electrospray/métodos
16.
PLoS One ; 13(12): e0208103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30507950

RESUMO

Aphids are major pests in cereal crops that cause direct and indirect damage leading to yield reduction. Despite the fact that wheat provides 20% of the world's caloric and protein diet, its metabolic responses to aphid attack, in general, and specifically its production of benzoxazinoid defense compounds are poorly understood. The objective of this study was to compare the metabolic diversity of durum wheat seedlings (Triticum turgidum ssp. durum) under attack by three different cereal aphids: i) the English grain aphid (Sitobion avenae Fabricius), ii) the bird cherry-oat aphid (Rhopalosiphum padi L.), and iii) the greenbug aphid (Schizaphis graminum Rondani), which are some of the most destructive aphid species to wheat. Insect progeny bioassays and metabolic analyses using chromatography/Q-Exactive/mass spectrometry non-targeted metabolomics and a targeted benzoxazinoid profile were performed on infested leaves. The insect bioassays revealed that the plants were susceptible to S. graminum, resistant to S. avenae, and mildly resistant to R. padi. The metabolic analyses of benzoxazinoids suggested that the predominant metabolites DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin- 3-one) and its glycosylated form DIMBOA-glucoside (Glc) were significantly induced upon both S. avenae, and R. padi aphid feeding. However, the levels of the benzoxazinoid metabolite HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside) were enhanced due to the feeding of S. avenae and S. graminum aphids, to which Svevo was the most resistant and the most susceptible, respectively. The results showed a partial correlation between the induction of benzoxazinoids and aphid reproduction. Overall, our observations revealed diverse metabolic responses of wheat seedlings to cereal aphid feeding.


Assuntos
Afídeos/fisiologia , Benzoxazinas/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Doenças das Plantas/parasitologia , Triticum/parasitologia , Animais , Afídeos/patogenicidade , Benzoxazinas/análise , Bioensaio , Resistência à Doença/fisiologia , Grão Comestível/metabolismo , Grão Comestível/parasitologia , Glucosídeos/análise , Glucosídeos/metabolismo , Ninfa , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Reprodução/fisiologia , Especificidade da Espécie , Triticum/metabolismo
17.
J Exp Bot ; 69(16): 3917-3931, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29846660

RESUMO

Plants synthesize carbohydrates in photosynthetic tissues, with the majority of plants transporting sucrose to non-photosynthetic tissues to sustain growth and development. While the anatomical, biochemical, and physiological processes regulating sucrose long-distance transport are well characterized, little is known concerning the genes controlling whole-plant carbohydrate partitioning. To identify loci influencing carbon export from leaves, we screened mutagenized maize plants for phenotypes associated with reduced carbohydrate transport, including chlorosis and excessive starch and soluble sugars in leaves. Carbohydrate partitioning defective1 (Cpd1) was identified as a semi-dominant mutant exhibiting these phenotypes. Phloem transport experiments suggested that the hyperaccumulation of starch and soluble sugars in the Cpd1/+ mutant leaves was due to inhibited sucrose export. Interestingly, ectopic callose deposits were observed in the phloem of mutant leaves, and probably underlie the decreased transport. In addition to the carbohydrate hyperaccumulation phenotype, Cpd1/+ mutants overaccumulate benzoxazinoid defense compounds and exhibit increased tolerance when attacked by aphids. However, double mutant studies between Cpd1/+ and benzoxazinoid-less plants indicate that the ectopic callose and carbon hyperaccumulation are independent of benzoxazinoid production. Based on the formation of callose occlusions in the developing phloem, we hypothesize that the cpd1 gene functions early in phloem development, thereby impacting whole-plant carbohydrate partitioning.


Assuntos
Glucanos/metabolismo , Floema/metabolismo , Proteínas de Plantas/fisiologia , Sacarose/metabolismo , Zea mays/metabolismo , Animais , Afídeos/fisiologia , Benzoxazinas/metabolismo , Transporte Biológico , Lepidópteros/fisiologia , Lignina/metabolismo , Mutação , Pigmentos Biológicos/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Zea mays/parasitologia
18.
Plant Signal Behav ; 13(1): e1422462, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29293391

RESUMO

Feeding by Spodoptera exigua (beet armyworm) larvae on Zea mays (maize) induces expression of 9-lipoxygenases to a greater extent than 13-lipoxygenases. Whereas 13-lipoxygenases have an established role in the synthesis of jasmonates that serve as defense signaling molecules in many plant species, relatively little is known about the role of 9-lipoxygenases in herbivore defense. Phylogenetic analysis of lipoxygenases from maize inbred lines B73 and W22 shows that, although most Lox genes are present in both lines, Lox12, a 9-lipoxygenase that has been implicated in fungal defense, is truncated and unlikely to encode a functional protein in W22. Two independent Mutator transposon insertions in another 9-lipoxygenase, Lox4, caused improved S. exigua growth on the mutant lines relative to wildtype W22. This observation suggests a function in herbivore defense for metabolic products downstream of maize Lox4, either through direct toxicity or a perhaps an as yet unknown signaling function.


Assuntos
Herbivoria/fisiologia , Lipoxigenases/metabolismo , Spodoptera/fisiologia , Zea mays/enzimologia , Zea mays/parasitologia , Animais , Larva/fisiologia , Lipoxigenase/metabolismo , Mutagênese Insercional , Filogenia
19.
J Exp Bot ; 68(16): 4709-4723, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28981781

RESUMO

Insects such as the beet armyworm (Spodoptera exigua) cause extensive damage to maize (Zea mays). Maize plants respond by triggering defense signaling, changes in gene expression, and biosynthesis of specialized metabolites. Leaves of maize inbred line B73, which has an available genome sequence, were infested with S. exigua for 1 to 24 h, followed by comparisons of the transcript and metabolite profiles with those of uninfested controls. The most extensive gene expression responses occurred rapidly, within 4-6 h after caterpillar infestation. However, both gene expression and metabolite profiles were altered within 1 h and continued to change during the entire 24 h experiment. The defensive functions of three caterpillar-induced genes were examined using available Dissociation transposon insertions in maize inbred line W22. Whereas mutations in the benzoxazinoid biosynthesis pathway (Bx1 and Bx2) significantly improved caterpillar growth, the knockout of a 13-lipoxygenase (Lox8) involved in jasmonic acid biosynthesis did not. Interestingly, 9-lipoxygenases, which lead to the production of maize death acids, were more strongly induced by caterpillar feeding than 13-lipoxygenases, suggesting an as yet unknown function in maize defense against herbivory. Together, these results provide a comprehensive view of the dynamic transcriptomic and metabolomic responses of maize leaves to caterpillar feeding.


Assuntos
Regulação da Expressão Gênica de Plantas , Spodoptera/fisiologia , Zea mays/fisiologia , Animais , Benzoxazinas/metabolismo , Ciclopentanos/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Herbivoria , Mutação , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Folhas de Planta/genética , Zea mays/genética
20.
Plant Cell ; 29(5): 944-959, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28408660

RESUMO

Plants produce diverse specialized metabolites (SMs), but the genes responsible for their production and regulation remain largely unknown, hindering efforts to tap plant pharmacopeia. Given that genes comprising SM pathways exhibit environmentally dependent coregulation, we hypothesized that genes within a SM pathway would form tight associations (modules) with each other in coexpression networks, facilitating their identification. To evaluate this hypothesis, we used 10 global coexpression data sets, each a meta-analysis of hundreds to thousands of experiments, across eight plant species to identify hundreds of coexpressed gene modules per data set. In support of our hypothesis, 15.3 to 52.6% of modules contained two or more known SM biosynthetic genes, and module genes were enriched in SM functions. Moreover, modules recovered many experimentally validated SM pathways, including all six known to form biosynthetic gene clusters (BGCs). In contrast, bioinformatically predicted BGCs (i.e., those lacking an associated metabolite) were no more coexpressed than the null distribution for neighboring genes. These results suggest that most predicted plant BGCs are not genuine SM pathways and argue that BGCs are not a hallmark of plant specialized metabolism. We submit that global gene coexpression is a rich, largely untapped resource for discovering the genetic basis and architecture of plant natural products.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Redes e Vias Metabólicas/genética , Redes e Vias Metabólicas/fisiologia , Biologia Computacional , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Família Multigênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...