Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 11(4)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37110505

RESUMO

Fusarium wilt of lettuce is found throughout the world, causing significant yield losses. Lettuce is the most-cultivated leafy vegetable in Greece, affected by a large number of foliar and soil-borne pathogens. In this study, 84 isolates of Fusarium oxysporum, obtained from soil-grown lettuce plants exhibiting wilt symptoms, were characterized as belonging to race 1 of F. oxysporum f. sp. lactucae based on sequence analysis of the translation elongation factor 1-alpha (TEF1-α) gene and the rDNA intergenic spacer (rDNA-IGS) region. The isolates were also assigned to one single race through PCR assays with specific primers targeting race 1 and race 4 of the pathogen. In addition, four representative isolates were confirmed to be associated with race 1 based on the pathogenicity tests with a set of differential lettuce cultivars. Artificial inoculations on the most commonly cultivated lettuce cultivars in Greece revealed that the tested cultivars varied regarding their susceptibility to F. oxysporum f. sp. lactucae race 1. Cultivars (cvs.) "Cencibel" and "Lugano" were found to be highly susceptible, while cvs. "Sandalina" and "Starfighter" were the most resistant ones. Expression analysis of 10 defense-related genes (PRB1, HPL1, LTC1, SOD, ERF1, PAL1, LOX, MPK, BG, and GST) was carried out on artificially inoculated lettuce plants of the four above cultivars at different time points after inoculation. In resistant cultivars, a higher induction rate was observed for all the tested genes in comparison with the susceptible ones. Moreover, in resistant cultivars, all genes except LTC1, MPK, and GST showed their highest induction levels in their earliest stages of infection. The results of this study are expected to contribute to the implementation of an integrated management program to control Fusarium wilt of lettuce, based mainly on the use of resistant cultivars.

2.
Pathogens ; 11(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36422608

RESUMO

Lettuce is the most commonly cultivated leafy vegetable in Greece, available in the market throughout the year. In this study, an emerging foliar disease observed in commercial farms has been associated to the pathogen Fusarium equiseti, a member of the Fusarium incarnatum-equiseti species complex (FIESC). Thirty F. equiseti isolates obtained from symptomatic lettuce plants were identified on the basis of morphology and evaluated for their pathogenicity. The isolates were further characterized using amplification and sequence analysis of the internal transcribed region (ITS-rDNA), and of the translation elongation factor 1-alpha (TEF1-a), calmodulin (CAM), beta-tubulin (Bt), and small subunit (SSU) genes. Moreover, a novel RT-qPCR assay was developed, designing a primer pair and a probe based on the TEF1-a sequences. This assay showed high specificity, amplifying F. equiseti DNA samples, while no amplification product was observed from samples of other common soilborne fungi. The generated RT-qPCR assay could be a useful tool for the detection and quantification of F. equiseti in soil samples deriving from fields cultivated with lettuce and other leafy vegetables, hosts of this specific pathogen.

3.
Nanomaterials (Basel) ; 11(7)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202883

RESUMO

Olive crop is frequently treated with copper fungicides to combat foliar and fruit diseases such as olive leaf spot caused by Fusicladium oleagineum and anthracnose caused by Colletotrichum spp. The replacement of copper-based products with more eco-friendly alternatives is a priority. Metal nanoparticles synthesized in several ways have recently revolutionized crop protection with applications against important crop pathogens. In this study, we present the development of four copper-based nanoparticles (CuNP Type 1 to 4) synthesized with a wet chemistry approach. The CuNPs were characterized using Transmission Electron Microscopy, Dynamic Light Scattering, Laser Doppler Electrophoresis, and Attenuated Total Reflection measurements. In addition, the activity of the four CuNP types was tested in vitro and in planta against F. oleagineum and Colletotrichum spp. In vitro sensitivity measurements showed that for both pathogens, mycelial growth was the most susceptible developmental stage to the tested compounds. Against both pathogens, CuNP Type 1 and Type 2 were found to be more active in reducing mycelial growth compared to the reference commercial compounds of copper oxide and copper hydroxide. In planta experiments showed that CuNP Type 3 and CuNP Type 4 exhibited a strong protectant activity against both F. oleagineum and Colletotrichum acutatum with control efficacy values significantly higher than those achieved by the applications of either reference product.

4.
Molecules ; 26(4)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671171

RESUMO

Olive leaf spot (OLS) caused by Fusicladiumoleagineum is mainly controlled using copper fungicides. However, the replacement of copper-based products with eco-friendly alternatives is a priority. The use of plant resistance-inducers (PRIs) or biological control agents (BCAs) could contribute in this direction. In this study we investigated the potential use of three PRIs (laminarin, acibenzolar-S-methyl, harpin) and a BCA (Bacillus amyloliquefaciens FZB24) for the management of OLS. The tested products provided control efficacy higher than 68%. In most cases, dual applications provided higher (p < 0.05) control efficacies compared to that achieved by single applications. The highest control efficacy of 100% was achieved by laminarin. Expression analysis of the selected genes by RT-qPCR revealed different kinetics of induction. In laminarin-treated plants, for most of the tested genes a higher induction rate (p < 0.05) was observed at 3 days post application. Pal, Lox, Cuao and Mpol were the genes with the higher inductions in laminarin-treated and artificially inoculated plants. The results of this study are expected to contribute towards a better understanding of PRIs in olive culture and the optimization of OLS control, while they provide evidence for potential contributions in the reduction of copper accumulation in the environment.


Assuntos
Glucanos/farmacologia , Olea/imunologia , Olea/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/prevenção & controle , Folhas de Planta/microbiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Olea/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...