Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 72: 108341, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38499256

RESUMO

Lignocellulosic biomass holds a crucial position in the prospective bio-based economy, serving as a sustainable and renewable source for a variety of bio-based products. These products play a vital role in displacing fossil fuels and contributing to environmental well-being. However, the inherent recalcitrance of biomass poses a significant obstacle to the efficient access of sugar polymers. Consequently, the bioconversion of lignocellulosic biomass into fermentable sugars remains a prominent challenge in biorefinery processes to produce biofuels and biochemicals. In addressing these challenges, extensive efforts have been dedicated to mitigating biomass recalcitrance through diverse pretreatment methods. One noteworthy process is Ammonia Fiber Expansion (AFEX) pretreatment, characterized by its dry-to-dry nature and minimal water usage. The volatile ammonia, acting as a catalyst in the process, is recyclable. AFEX contributes to cleaning biomass ester linkages and facilitating the opening of cell wall structures, enhancing enzyme accessibility and leading to a fivefold increase in sugar conversion compared to untreated biomass. Over the last decade, AFEX has demonstrated substantial success in augmenting the efficiency of biomass conversion processes. This success has unlocked the potential for sustainable and economically viable biorefineries. This paper offers a comprehensive review of studies focusing on the utilization of AFEX-pretreated biomass in the production of second-generation biofuels, ruminant feed, and additional value-added bioproducts like enzymes, lipids, proteins, and mushrooms. It delves into the details of the AFEX pretreatment process at both laboratory and pilot scales, elucidates the mechanism of action, and underscores the role of AFEX in the biorefinery for developing biofuels and bioproducts, and nutritious ruminant animal feed production. While highlighting the strides made, the paper also addresses current challenges in the commercialization of AFEX pretreatment within biorefineries. Furthermore, it outlines critical considerations that must be addressed to overcome these challenges, ensuring the continued progress and widespread adoption of AFEX in advancing sustainable and economically viable bio-based industries.


Assuntos
Amônia , Biocombustíveis , Amônia/química , Amônia/farmacologia , Biomassa , Estudos Prospectivos , Lignina/metabolismo , Açúcares
2.
Crit Rev Biotechnol ; 43(1): 100-120, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923890

RESUMO

Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.


Assuntos
Quitosana , Glucosamina , Glucosamina/metabolismo , Quitina , Escherichia coli/metabolismo , Fungos/metabolismo
3.
Front Microbiol ; 13: 844287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694290

RESUMO

A thermophilic Geobacillus bacterial strain, WSUCF1 contains different carbohydrate-active enzymes (CAZymes) capable of hydrolyzing hemicellulose in lignocellulosic biomass. We used proteomic, genomic, and bioinformatic tools, and genomic data to analyze the relative abundance of cellulolytic, hemicellulolytic, and lignin modifying enzymes present in the secretomes. Results showed that CAZyme profiles of secretomes varied based on the substrate type and complexity, composition, and pretreatment conditions. The enzyme activity of secretomes also changed depending on the substrate used. The secretomes were used in combination with commercial and purified enzymes to carry out saccharification of ammonia fiber expansion (AFEX)-pretreated corn stover and extractive ammonia (EA)-pretreated corn stover. When WSUCF1 bacterial secretome produced at different conditions was combined with a small percentage of commercial enzymes, we observed efficient saccharification of EA-CS, and the results were comparable to using a commercial enzyme cocktail (87% glucan and 70% xylan conversion). It also opens the possibility of producing CAZymes in a biorefinery using inexpensive substrates, such as AFEX-pretreated corn stover and Avicel, and eliminates expensive enzyme processing steps that are used in enzyme manufacturing. Implementing in-house enzyme production is expected to significantly reduce the cost of enzymes and biofuel processing cost.

4.
Sci Rep ; 12(1): 2521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169269

RESUMO

Novel Immunological and Mass Spectrometry Methods for Comprehensive Analysis of Recalcitrant Oligosaccharides in AFEX Pretreated Corn Stover. Lignocellulosic biomass is a sustainable alternative to fossil fuel and is extensively used for developing bio-based technologies to produce products such as food, feed, fuel, and chemicals. The key to these technologies is to develop cost competitive processes to convert complex carbohydrates present in plant cell wall to simple sugars such as glucose, xylose, and arabinose. Since lignocellulosic biomass is highly recalcitrant, it must undergo a combination of thermochemical treatment such as Ammonia Fiber Expansion (AFEX), dilute acid (DA), Ionic Liquid (IL) and biological treatment such as enzyme hydrolysis and microbial fermentation to produce desired products. However, when using commercial fungal enzymes during hydrolysis, only 75-85% of the soluble sugars generated are monomeric sugars, while the remaining 15-25% are soluble recalcitrant oligosaccharides that cannot be easily utilized by microorganisms. Previously, we successfully separated and purified the soluble recalcitrant oligosaccharides using a combination of charcoal and celite-based separation followed by size exclusion chromatography and studies their inhibitory properties on enzymes. We discovered that the oligosaccharides with higher degree of polymerization (DP) containing methylated uronic acid substitutions were more recalcitrant towards commercial enzyme mixtures than lower DP and neutral oligosaccharides. Here, we report the use of several complementary techniques that include glycome profiling using plant biomass glycan specific monoclonal antibodies (mAbs) to characterize sugar linkages in plant cell walls and enzymatic hydrolysate, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) using structurally-informative diagnostic peaks offered by negative ion post-secondary decay spectra, gas chromatography followed by mass spectrometry (GC-MS) to characterize oligosaccharide sugar linkages with and without derivatization. Since oligosaccharides (DP 4-20) are small, it is challenging to mobilize these molecules for mAbs binding and characterization. To overcome this problem, we have applied a new biotin-coupling based oligosaccharide immobilization method that successfully tagged most of the low DP soluble oligosaccharides on to a micro-plate surface followed by specific linkage analysis using mAbs in a high-throughput system. This new approach will help develop more advanced versions of future high throughput glycome profiling methods that can be used to separate and characterize oligosaccharides present in biomarkers for diagnostic applications.


Assuntos
Anticorpos Monoclonais/imunologia , Biotina/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Oligossacarídeos/química , Oligossacarídeos/imunologia , Extratos Vegetais/química , Extratos Vegetais/imunologia , Folhas de Planta/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Zea mays/química , Biomassa , Configuração de Carboidratos , Parede Celular/química , Cromatografia em Gel/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/imunologia , Hidrólise , Lignina/química , Açúcares/química
5.
Front Chem ; 9: 826625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127657

RESUMO

Lignin-carbohydrate complexes (LCCs) in the plant cell wall are responsible for providing resistance against biomass-degrading enzymes produced by microorganisms. Four major types of lignin-carbohydrate bonds are reported in the literature, namely, benzyl ethers, benzyl esters, phenyl glycosides, and acetyl ester linkages. Ester's linkages in the plant cell wall are labile to alkaline pretreatments, such as ammonia fiber expansion (AFEX), which uses liquid or gaseous ammonia to cleave those linkages in the plant cell wall and reduce biomass recalcitrance. Two competing reactions, notably hydrolysis and ammonolysis, take place during AFEX pretreatment process, producing different aliphatic and aromatic acids, as well as their amide counterparts. AFEX pretreated grasses and agricultural residues are known to increase conversion of biomass to sugars by four- to five-fold when subjected to commercial enzyme hydrolysis, yielding a sustainable feedstock for producing biofuels, biomaterials, and animal feed. Animal feed trials on dairy cows have demonstrated a 27% increase in milk production when compared to a control feedstock. However, the presence of carboxamides in feedstocks could promote neurotoxicity in animals if consumed beyond a certain concentration. Thus, there is the need to overcome regulatory hurdles associated with commercializing AFEX pretreated biomass as animal feed in the United States. This manuscript demonstrates a modified pretreatment for increasing the digestibility of industrial byproducts such as Brewer's spent grains (BSG) and high-fiber meal (HFM) produced from BSG and dry distillers grains with soluble (DDGS), while avoiding the production of carboxamides. The three industrial byproducts were first treated with calculated amounts of alkali such as NaOH, Ca(OH)2, or KOH followed by AFEX pretreatment. We found that 4% alkali was able to de-esterify BSG and DDGS more efficiently than using 2% alkali at both 10 and 20% solids loading. AFEX pretreatment of de-esterified BSG, HFM, and DDGS produced twofold higher glucan conversion than respective untreated biomass. This new discovery can help overcome potential regulatory issues associated with the presence of carboxamides in ammonia-pretreated animal feeds and is expected to benefit several farmers around the world.

6.
Methods Mol Biol ; 1995: 1-32, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31148119

RESUMO

Lipids are in high demand in food production, nutritional supplements, detergents, lubricants, and biofuels. Different oil seeds produced from plants are conventionally extracted to yield lipids. With increasing population and reduced availability of cultivable land, conventional methods of producing lipids alone will not satisfy increasing demand. Lipids produced using different microbial sources are considered as sustainable alternative to plant derived lipids. Various microorganisms belonging to the genera of algae, bacteria, yeast, fungi, or marine-derived microorganisms such as thraustochytrids possess the ability to accumulate lipids in their cells. A variety of microbial production technologies are being used to cultivate these organisms under specific conditions using agricultural residues as carbon source to be cost competitive with plant derived lipids. Microbial oils, also known as single cell oils, have many advantages when compared with plant derived lipids, such as shorter life cycle, less labor required, season and climate independence, no use of arable land and ease of scale-up. In this chapter we compare the lipids derived from plants and different microorganisms. We also highlight various analytical techniques that are being used to characterize the lipids produced in oleaginous organisms and their applications in various processes.


Assuntos
Bactérias/química , Fungos/química , Lipídeos/química , Plantas/química , Bactérias/metabolismo , Técnicas de Química Analítica/métodos , Fungos/metabolismo , Metabolismo dos Lipídeos , Lipidômica/métodos , Microalgas/química , Microalgas/metabolismo , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...