Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 114(7): 071101, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25763945

RESUMO

The 12C(α,γ)^16O reaction plays a fundamental role in astrophysics and needs to be known with accuracy better than 10%. Cascade γ transitions through the excited states of 16 O are contributing to the uncertainty. We constrained the contribution of the 0+ (6.05 MeV) and 3- (6.13 MeV) cascade transitions by measuring the asymptotic normalization coefficients for these states using the α-transfer reaction 6 Li(12C,d)^16O at sub-Coulomb energy. The contribution of the 0+ and 3- cascade transitions at 300 keV is found to be 1.96 ± 0.3 and 0.12 ± 0.04 keV b for destructive interference of the direct and resonance capture and 4.36 ± 0.45 and 1.44 ± 0.12 keV b for constructive interference, respectively. The combined contribution of the 0+ and 3- cascade transitions to the 12C(α,γ)16O reaction cross section at 300 keV does not exceed 4%. Significant uncertainties have been dramatically reduced.

2.
Phys Rev Lett ; 102(15): 151101, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518614

RESUMO

Observations of galactic gamma-ray activity have challenged the current understanding of nucleosynthesis in massive stars. Recent measurements of (60)Fe abundances relative to ;{26}Al;{g} have underscored the need for accurate nuclear information concerning the stellar production of (60)Fe. In light of this motivation, a first measurement of the stellar (60)Fe(n, gamma)(61)Fe cross section, the predominant destruction mechanism of (60)Fe, has been performed by activation at the Karlsruhe Van de Graaff accelerator. Results show a Maxwellian averaged cross section at kT = 25 keV of 9.9 +/-_{1.4(stat)};{2.8(syst)}mbarn, a significant reduction in uncertainty with respect to existing theoretical discrepancies. This result will serve to significantly constrain models of (60)Fe nucleosynthesis in massive stars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...