Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Muscle Nerve ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922958

RESUMO

INTRODUCTION/AIMS: The precise relationship between molecular mimicry and tissue-specific autoimmunity is unknown. Major histocompatibility complex (MHC) class II antigen presenting cell-CD4+ T-cell receptor complex interactions are necessary for adaptive immunity. This study aimed to determine the role of endoneurial endothelial cell MHC class II in autoimmune polyneuropathy. METHODS: Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aaflox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aaflox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aaflox/flox; vWF-iCre/+ mice to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+, H2-Aaflox/flox; +/+, H2-Aa+/+; vWF-iCre/+ and untreated H2-Aaflox/flox; vWF-iCre/+ adult female SJL mice. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. RESULTS: Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Tamoxifen-treated H2-Aaflox/flox; vWF-iCre/+ mice were resistant to sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. DISCUSSION: A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo was developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.

2.
Autoimmunity ; 57(1): 2361745, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38850571

RESUMO

Immune-mediated demyelinating polyneuropathies (IMDPs) are rare disorders in which dysregulated adaptive immune responses cause peripheral nerve demyelinating inflammation and axonal injury in susceptible individuals. Despite significant advances in understanding IMDP pathogenesis guided by patient data and representative mammalian models, specific therapies are lacking. Significant knowledge gaps in IMDP pathogenesis still exist, e.g. precise antigen(s) and mechanisms that initially trigger immune system activation and identification of large population disease susceptibility factors. The initial directional cues for antigen-specific effector or autoreactive leukocyte trafficking into peripheral nerves are also unknown. An overview of current animal models, with emphasis on the experimental autoimmune neuritis and spontaneous autoimmune peripheral polyneuropathy models, is provided. Insights on the initial directional cues for peripheral nerve tissue specific autoimmunity using a novel Major Histocompatibility Complex class II conditional knockout mouse strain are also discussed, suggesting an essential research tool to study cell- and time-dependent adaptive immunity in autoimmune diseases.


Assuntos
Modelos Animais de Doenças , Animais , Humanos , Camundongos , Neurite Autoimune Experimental/imunologia , Camundongos Knockout , Autoimunidade , Polineuropatias/imunologia , Polineuropatias/etiologia , Imunidade Adaptativa , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo
3.
bioRxiv ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38915676

RESUMO

Diabetic peripheral neuropathy (DPN) is a prevalent complication of diabetes mellitus that is caused by metabolic toxicity to peripheral axons. We aimed to gain deep mechanistic insight into the disease process using bulk and spatial RNA sequencing on tibial and sural nerves recovered from lower leg amputations in a mostly diabetic population. First, our approach comparing mixed sensory and motor tibial and purely sensory sural nerves shows key pathway differences in affected nerves, with distinct immunological features observed in sural nerves. Second, spatial transcriptomics analysis of sural nerves reveals substantial shifts in endothelial and immune cell types associated with severe axonal loss. We also find clear evidence of neuronal gene transcript changes, like PRPH, in nerves with axonal loss suggesting perturbed RNA transport into distal sensory axons. This motivated further investigation into neuronal mRNA localization in peripheral nerve axons generating clear evidence of robust localization of mRNAs such as SCN9A and TRPV1 in human sensory axons. Our work gives new insight into the altered cellular and transcriptomic profiles in human nerves in DPN and highlights the importance of sensory axon mRNA transport as an unappreciated potential contributor to peripheral nerve degeneration.

4.
Vascul Pharmacol ; 155: 107369, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554988

RESUMO

Mouse models are invaluable to understanding fundamental mechanisms in vascular biology during development, in health and different disease states. Several constitutive or inducible models that selectively knockout or knock in genes in vascular endothelial cells exist; however, functional and phenotypic differences exist between microvascular and macrovascular endothelial cells in different organs. In order to study microvascular endothelial cell-specific biological processes, we developed a Tamoxifen-inducible von Willebrand Factor (vWF) Cre recombinase mouse in the SJL background. The transgene consists of the human vWF promoter with the microvascular endothelial cell-selective 734 base pair sequence to drive Cre recombinase fused to a mutant estrogen ligand-binding domain [ERT2] that requires Tamoxifen for activity (CreERT2) followed by a polyadenylation (polyA) signal. We initially observed Tamoxifen-inducible restricted bone marrow megakaryocyte and sciatic nerve microvascular endothelial cell Cre recombinase expression in offspring of a mixed strain hemizygous C57BL/6-SJL founder mouse bred with mT/mG mice, with >90% bone marrow megakaryocyte expression efficiency. Founder mouse offspring were backcrossed to the SJL background by speed congenics, and intercrossed for >10 generations to develop hemizygous Tamoxifen-inducible vWF Cre recombinase (vWF-iCre/+) SJL mice with stable transgene insertion in chromosome 1. Microvascular endothelial cell-specific Cre recombinase expression occurred in the sciatic nerves, brains, spleens, kidneys and gastrocnemius muscles of adult vWF-iCre/+ SJL mice bred with Ai14 mice, with retained low level bone marrow and splenic megakaryocyte expression. This novel mouse strain would support hypothesis-driven mechanistic studies to decipher the role(s) of specific genes transcribed by microvascular endothelial cells during development, as well as in physiologic and pathophysiologic states in an organ- and time-dependent manner.


Assuntos
Células Endoteliais , Integrases , Tamoxifeno , Fator de von Willebrand , Animais , Feminino , Humanos , Masculino , Camundongos , Células Endoteliais/metabolismo , Integrases/genética , Integrases/metabolismo , Megacariócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microvasos/metabolismo , Regiões Promotoras Genéticas , Tamoxifeno/farmacologia , Fator de von Willebrand/metabolismo , Fator de von Willebrand/genética
5.
Adv Ther (Weinh) ; 6(4)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37649593

RESUMO

Drug delivery into the peripheral nerves and nerve roots has important implications for effective local anesthesia and treatment of peripheral neuropathies and chronic neuropathic pain. Similar to drugs that need to cross the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB) to gain access to the central nervous system (CNS), drugs must cross the peripheral nerve barriers (PNB), formed by the perineurium and blood-nerve barrier (BNB) to modulate peripheral axons. Despite significant progress made to develop effective strategies to enhance BBB permeability in therapeutic drug design, efforts to enhance drug permeability and retention in peripheral nerves and nerve roots are relatively understudied. Guided by knowledge describing structural, molecular and functional similarities between restrictive neural barriers in the CNS and peripheral nervous system (PNS), we hypothesize that certain CNS drug delivery strategies are adaptable for peripheral nerve drug delivery. In this review, we describe the molecular, structural and functional similarities and differences between the BBB and PNB, summarize and compare existing CNS and peripheral nerve drug delivery strategies, and discuss the potential application of selected CNS delivery strategies to improve efficacious drug entry for peripheral nerve disorders.

6.
bioRxiv ; 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37546875

RESUMO

Introduction: Major histocompatibility complex (MHC) class II professional antigen presenting cell-naïve CD4+ T cell interactions via the T-cell receptor complex are necessary for adaptive immunity. MHC class II upregulation in multiple cell types occurs in human autoimmune polyneuropathy patient biopsies, necessitating studies to ascertain cellular signaling pathways required for tissue-specific autoimmunity. Methods: Cryopreserved Guillain-Barré syndrome (GBS) patient sural nerve biopsies and sciatic nerves from the severe murine experimental autoimmune neuritis (sm-EAN) GBS model were studied. Cultured conditional ready MHC Class II antigen A-alpha chain (H2-Aa) embryonic stem cells were used to generate H2-Aa flox/+ C57BL/6 mice. Mice were backcrossed and intercrossed to the SJL background to generate H2-Aa flox/flox SJL mice, bred with hemizygous Tamoxifen-inducible von Willebrand factor Cre recombinase (vWF-iCre/+) SJL mice to generate H2-Aa flox/flox ; vWF-iCre/+ to study microvascular endothelial cell adaptive immune responses. Sm-EAN was induced in adult female SJL Tamoxifen-treated H2-Aa flox/flox ; vWF-iCre/+ mice and H2-Aa flox/flox ; +/+ littermate controls. Neurobehavioral, electrophysiological and histopathological assessments were performed at predefined time points. Results: Endoneurial endothelial cell MHC class II expression was observed in normal and inflamed human and mouse peripheral nerves. Adult female Tamoxifen-treated H2-Aa flox/flox ; vWF-iCre/+ did not develop sm-EAN despite extensive MHC class II expression in lymphoid and non-lymphoid tissues. Discussion: A conditional MHC class II knockout mouse to study cell- and time-dependent adaptive immune responses in vivo is developed. Initial studies show microvascular endothelial cell MHC class II expression is necessary for peripheral nerve specific autoimmunity, as advocated by human in vitro adaptive immunity and ex vivo transplant rejection studies.

7.
Brain Behav Immun ; 112: 220-234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315702

RESUMO

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain. In contrast to neuropathic pain models, we did not observe any changes in blood-nerve barrier permeability due to PI16 deletion. Instead, Pi16-/- mice display reduced macrophage density in the CFA-injected hindpaw. Furthermore, there was a significant bias toward CD206hi (anti-inflammatory) macrophages in the hindpaw and associated dorsal root ganglia. Following CFA, intrathecal depletion of CD206+ macrophages using mannosylated clodronate liposomes promoted sustained pain in Pi16-/- mice. Similarly, an IL-10 neutralizing antibody also promoted sustained CFA pain in the Pi16-/ when administered intrathecally. Collectively, our results point to fibroblast-derived PI16 mediating substantial differences in macrophage phenotype in the pain neuroaxis under conditions of inflammation. The co-expression of PI16 alongside fibroblast markers in human DRG raise the likelihood that a similar mechanism operates in human inflammatory pain states. Collectively, our findings may have implications for targeting fibroblast-immune cell crosstalk for the treatment of chronic pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Humanos , Animais , Inflamação , Macrófagos , Fibroblastos , Anticorpos Neutralizantes/farmacologia , Gânglios Espinais , Hiperalgesia , Proteínas de Transporte , Glicoproteínas
8.
Eur Heart J Case Rep ; 7(4): ytad183, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37123653

RESUMO

Background: Mitochondrial cardiomyopathy (MCM) is an alteration in cardiac structure and function caused by gene mutations or deletions affecting components of the mitochondrial respiratory chain. We report a case of MCM presenting as cardiogenic shock, ultimately requiring left ventricular assist device (LVAD) placement. Case summary: A 35-year-old woman with chronic weakness and non-ischaemic cardiomyopathy, on home dobutamine, was referred to our institution for heart transplantation evaluation. She was admitted to the hospital for suspected cardiogenic shock after laboratory tests revealed a lactate level of 5.4 mmol/L (ref: 0.5-2.2 mmol/L). Her hospital course was complicated by persistently undulating lactate levels (0.2-8.6 mmol/L) that increased with exertion and did not correlate with mixed venous oxygen saturation measurements obtained from a pulmonary artery catheter. Electrodiagnostic testing demonstrated a proximal appendicular and axial myopathy. A left deltoid muscle biopsy was performed that demonstrated evidence of a mitochondrial disease on light and electron microscopy. Muscle genetic testing revealed two large-scale mitochondrial deoxyribonucleic acid sequence deletions, confirming the diagnosis of MCM. She subsequently underwent LVAD placement, which was complicated by significant right ventricular failure requiring early mechanical support. She was ultimately discharged home with chronic inotropic support. Discussion: Mitochondrial cardiomyopathy in adults is a diagnostic and therapeutic challenge. Prompt diagnosis should be made in patients with unknown causes of heart failure via skeletal muscle histopathology guided by electrodiagnostic studies, and targeted genetic testing in affected tissue. Outcomes in adult MCM patients who receive an LVAD are unknown and warrant further investigation.

9.
Front Immunol ; 13: 935306, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35983047

RESUMO

Leukocyte infiltration and persistence within peripheral nerves have been implicated in chronic nociception pathogenesis in murine peripheral neuropathy models. Endoneurial cytokine and chemokine expression contribute to leukocyte infiltration and maintenance of a pro-inflammatory state that delays peripheral nerve recovery and promotes chronic pain behaviors in these mice. However, there has been a failure to translate murine model data into safe and effective treatments for chronic neuropathic pain in peripheral neuropathy patients, or develop reliable biomarkers that may help diagnose or determine treatment responses in affected patients. Initial work showed that persistent sciatic nerve CD11b+ CD45+ leukocyte infiltration was associated with disease severity in three mouse models of inflammatory and traumatic peripheral neuropathies, implying a direct contributing role in disease pathogenesis. In support of this, CD11b+ leukocytes were also seen in the sural nerve biopsies of chronic neuropathic pain patients with three different peripheral neuropathies. Systemic CD11b antagonism using a validated function-neutralizing monoclonal antibody effectively treated chronic nociception following unilateral sciatic nerve crush injury (a representative traumatic neuropathy model associated with axonal degeneration and increased blood-nerve barrier permeability) and does not cause drug addiction behaviors in adult mice. These data suggest that CD11b could be an effective molecular target for chronic neuropathic pain treatment in inflammatory and traumatic peripheral neuropathies. Despite known murine peripheral neuropathy model limitations, our initial work suggests that early expression of pro-inflammatory cytokines, such as tissue inhibitor of metalloproteinases-1 may predict subsequent chronic nociception development following unilateral sciatic nerve crush injury. Studies aligning animal model investigation with observational data from well-characterized human peripheral neuropathies, including transcriptomics and proteomics, as well as animal model studies using a human clinical trial design should foster the identification of clinically relevant biomarkers and effective targeted treatments with limited addiction potential for chronic neuropathic pain in peripheral neuropathy patients.


Assuntos
Lesões por Esmagamento , Neuralgia , Neurite (Inflamação) , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Animais , Biomarcadores , Lesões por Esmagamento/complicações , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Integrinas/uso terapêutico , Leucócitos/metabolismo , Camundongos , Neuralgia/tratamento farmacológico , Neuralgia/etiologia , Traumatismos dos Nervos Periféricos/complicações , Neuropatia Ciática/complicações
10.
J Investig Med High Impact Case Rep ; 10: 23247096221117801, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35993408

RESUMO

Dynamin 2 mutations are associated with Charcot-Marie-Tooth neuropathy. We report two siblings with a novel missense heterozygous point mutation (c.1609 G>A) in the highly conserved pleckstrin homology domain in exon 15 of Dynamin 2 presenting with progressive length-dependent sensorimotor polyneuropathy with mixed demyelinating and axonal features on electrodiagnostic studies. The previously unrecognized missense point mutation, which was inherited from their symptomatic but previously undiagnosed mother, was determined to be likely pathogenic based on a non-conservative amino acid substitution (p.Gly537Ser) that is predicted to damage secondary protein structure or function. This report emphasizes the importance of recognizing inherited neuropathies in clinical practice and evaluating suspected pathogenic gene variants initially classified to be of undetermined clinical significance in family cohorts. These cases add to the spectrum of pathogenic Dynamin 2 mutations associated with dominant-intermediate Charcot-Marie-Tooth neuropathy.


Assuntos
Doença de Charcot-Marie-Tooth , Dinamina II , Doença de Charcot-Marie-Tooth/diagnóstico , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Dinamina II/genética , Humanos , Mutação , Mutação de Sentido Incorreto
11.
J Neurosci ; 42(25): 5085-5101, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35589390

RESUMO

Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.


Assuntos
Doença de Charcot-Marie-Tooth , Animais , Doença de Charcot-Marie-Tooth/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/metabolismo , Camundongos , Doenças do Sistema Nervoso Periférico , RNA Mensageiro , Células de Schwann/metabolismo
12.
Neurology ; 2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34857535

RESUMO

OBJECTIVE: To determine whether rituximab is safe and potentially beneficial, warranting further investigation in an efficacy trial for acetylcholine receptor antibody-positive generalized MG (AChR-Ab+ gMG). METHODS: The B-Cell Targeted Treatment in MG (BeatMG) study was a randomized, double-blind, placebo-controlled, multicenter phase-2 trial that utilized a futility design. Individuals 21-90 years of age, with AChR-Ab+ gMG (MG Foundation of America Class II-IV) and receiving prednisone ≥15 mg/day were eligible. The primary outcome was a measure of steroid-sparing effect, defined as the proportion achieving ≥75% reduction in mean daily prednisone dose in the 4-weeks prior to week 52 and with clinical improvement or no significant worsening as compared to the 4-week period prior to randomization. The co-primary outcome was safety. Secondary outcomes included MG-specific clinical assessments. Fifty-two individuals were randomized (1:1) to either a two-cycle rituximab/placebo regimen, with follow-up through 52-weeks. RESULTS: Of the 52 participants included, mean (±SD) age at enrollment was 55.1 (±17.1) years; 23 (44.2%) were female, and 31 (59.6%) were MGFA Class II. The mean (±SD) baseline prednisone dose was 22.1 (±9.7) mg/day. The primary steroid-sparing outcome was achieved in 60% of those on rituximab vs. 56% on placebo. The study reached its futility endpoint (p=0.03) suggesting that the pre-defined clinically meaningful improvement of 30% due to rituximab over placebo was unlikely to be achieved in a subsequent, larger trial. No safety issues identified. CONCLUSIONS: While rituximab was safe and well-tolerated, these results suggest that there is a low probability of observing the defined clinically meaningful steroid-sparing effect over a 12-month period in a phase-3 trial of mild-moderately symptomatic AChR-Ab+ gMG. CLASSIFICATION OF EVIDENCE: This study provides Class I evidence that for mild-to-moderate AChR-Ab+ gMG, compared with placebo, rituximab is safe but unlikely to reduce steroid use by an absolute difference of at least 30% at 1 year. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT02110706.

13.
J Investig Med High Impact Case Rep ; 9: 23247096211001646, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33733902

RESUMO

Patients with progressive hand weakness may be seen in ambulatory medical clinics or in emergency rooms due to direct effects on activities of daily living or inadvertent injury associated with overuse or attempts to maintain normal function. It is important to recognize potential cause(s) and perform appropriate diagnostic tests and referrals that aid guide appropriate treatment that may lead to good outcomes. Hirayama disease is an underrecognized disorder in young adults due to an asymmetric growth-associated cervical spinal cord compression injury. Awareness of this disorder by internists, emergency room physicians, and radiologists would prevent unnecessary tests and interventions that may contribute to disease progression by delaying appropriate treatments or treating inappropriately, with consequential effects on outcomes. In this article, we describe 3 Hirayama disease cases from a single tertiary care institution and demonstrate how delayed diagnosis affected outcomes in 2 patients and early recognition facilitated improved outcomes in a patient.


Assuntos
Força da Mão , Atrofias Musculares Espinais da Infância , Atividades Cotidianas , Vértebras Cervicais/lesões , Humanos , Imageamento por Ressonância Magnética , Atrofias Musculares Espinais da Infância/complicações , Atrofias Musculares Espinais da Infância/diagnóstico , Adulto Jovem
16.
Muscle Nerve ; 62(3): 333-343, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32483837

RESUMO

INTRODUCTION: Our aim in this study was to identify the prevalence and clinical characteristics of LRP4/agrin-antibody-positive double-seronegative myasthenia gravis (DNMG). METHODS: DNMG patients at 16 sites in the United States were tested for LRP4 and agrin antibodies, and the clinical data were collected. RESULTS: Of 181 DNMG patients, 27 (14.9%) were positive for either low-density lipoprotein receptor-related protein 4 (LRP4) or agrin antibodies. Twenty-three DNMG patients (12.7%) were positive for both antibodies. More antibody-positive patients presented with generalized symptoms (69%) compared with antibody-negative patients (43%) (P ≤ .02). Antibody-positive patients' maximum classification on the Myasthenia Gravis Foundation of America (MGFA) scale was significantly higher than that for antibody-negative patients (P ≤ .005). Seventy percent of antibody-positive patients were classified as MGFA class III, IV, or V compared with 39% of antibody-negative patients. Most LRP4- and agrin-antibody-positive patients (24 of 27, 89%) developed generalized myathenia gravis (MG), but with standard MG treatment 81.5% (22 of 27) improved to MGFA class I or II during a mean follow-up of 11 years. DISCUSSION: Antibody-positive patients had more severe clinical disease than antibody-negative patients. Most DNMG patients responded to standard therapy regardless of antibody status.


Assuntos
Agrina/imunologia , Autoanticorpos , Proteínas Relacionadas a Receptor de LDL/imunologia , Miastenia Gravis/diagnóstico , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miastenia Gravis/epidemiologia , Miastenia Gravis/imunologia , Prevalência , Avaliação de Sintomas , Estados Unidos
17.
Exp Neurol ; 328: 113272, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32142802

RESUMO

A highly regulated endoneurial microenvironment is required for normal axonal function in peripheral nerves and nerve roots, which structurally consist of an outer collagenous epineurium, inner perineurium consisting of multiple concentric layers of specialized epithelioid myofibroblasts that surround the innermost endoneurium, which consists of myelinated and unmyelinated axons embedded in a looser mesh of collagen fibers. Endoneurial homeostasis is achieved by tight junction-forming endoneurial microvessels that control ion, solute, water, nutrient, macromolecule and leukocyte influx and efflux between the bloodstream and endoneurium, and the innermost layers of the perineurium that control interstitial fluid component flux between the freely permeable epineurium and endoneurium. Strictly speaking, endoneurial microvascular endothelium should be considered the blood-nerve barrier (BNB) due to direct communication with circulating blood. The mammalian BNB is considered the second most restrictive vascular system after the blood-brain barrier (BBB) based on classic in situ permeability studies. Structural alterations in endoneurial microvessels or interactions with hematogenous leukocytes have been described in several human peripheral neuropathies; however major advances in BNB biology in health and disease have been limited over the past 50 years. Guided by transcriptome and proteome studies of normal and pathologic human peripheral nerves, purified primary and immortalized human endoneurial endothelial cells that form the BNB and leukocytes from patients with well-characterized peripheral neuropathies, validated by in situ or ex vivo protein expression studies, data are emerging on the molecular and functional characteristics of the human BNB in health and in specific peripheral neuropathies, as well as chronic neuropathic pain. These early advancements have the potential to not only increase our understanding of how the BNB works and adapts or fails to adapt to varying insult, but provide insights relevant to pathogenic leukocyte trafficking, with translational potential and specific therapeutic application for chronic peripheral neuropathies and neuropathic pain.


Assuntos
Barreira Hematoneural , Homeostase , Nervos Periféricos , Doenças do Sistema Nervoso Periférico , Humanos
18.
J Peripher Nerv Syst ; 24(2): 195-206, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31119823

RESUMO

The blood-nerve barrier (BNB) formed by tight junction-forming endoneurial microvessels located in the innermost compartment of peripheral nerves, and the perineurium serve to maintain the internal microenvironment required for normal signal transduction. The specific molecular components that define the normal adult human BNB are not fully known. Guided by data derived from the adult human BNB transcriptome, we evaluated the in situ expression of 25 junctional complex, transporter, cell membrane, and cytoskeletal proteins in four histologically normal adult sural nerves by indirect fluorescent immunohistochemistry to determine proteins specifically expressed by restrictive endoneurial microvascular endothelium. Using Ulex Europaeus Agglutinin-1 expression to detect endothelial cells, we ascertained that the selected proteins were uniformly expressed in ≥90% of endoneurial microvessels. P-glycoprotein (also known as adenosine triphosphate-binding cassette subfamily B member 1) and solute carrier family 1 member 1 demonstrated restricted expression by endoneurial endothelium only, with classic tight junction protein claudin-5 also expressed on fenestrated epineurial macrovessels, and vascular-specific adherens junction protein cadherin-5 also expressed by the perineurium. The expression profiles of the selected proteins provide significant insight into the molecular composition of normal adult peripheral nerves. Further work is required to elucidate the human adult BNB molecular signature in order to better understand its development and devise strategies to restore function in peripheral neuropathies.


Assuntos
Barreira Hematoneural/metabolismo , Microvasos/metabolismo , Nervos Periféricos/metabolismo , Transcriptoma , Idoso , Aglutininas/metabolismo , Células Endoteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade
19.
Tissue Barriers ; 6(4): 1-22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30523753

RESUMO

The human blood-nerve barrier (BNB) formed by endoneurial microvascular endothelial cells, serves to maintain the internal microenvironment in peripheral nerves required for normal axonal signal transduction to and from the central nervous system. The mechanisms of human BNB formation in health and disease are not fully elucidated. Prior work established a sufficient role for glial-derived neurotrophic factor (GDNF) in enhancing human BNB biophysical properties following serum withdrawal in vitro via RET-tyrosine kinase-dependent cytoskeletal remodeling. The objective of the study was to ascertain the downstream signaling pathway involved in this process and more comprehensively determine the molecular changes that may occur at human BNB intercellular junctions under the influence of GDNF. Proteomic studies suggested expression of several mitogen-activated protein kinases (MAPKs) in confluent GDNF-treated endoneurial endothelial cells following serum withdrawal. Using electric cell-substrate impedance sensing to continuously measure transendothelial electrical resistance and static transwell solute permeability assays with fluoresceinated small and large molecules to evaluate BNB biophysical function, we determined MAPK signaling was essential for GDNF-mediated BNB TEER increase following serum withdrawal downstream of RET-tyrosine kinase signaling that persisted for up to 48 hours in vitro. This increase was associated with reduced solute permeability to fluoresceinated sodium and high molecular weight dextran. Specific GDNF-mediated alterations were detected in cytoskeletal and intercellular junctional complex molecular transcripts and proteins relative to basal conditions without exogenous GDNF. This work provides novel insights into the molecular determinants and mechanisms responsible for specialized restrictive human BNB formation in health and disease.


Assuntos
Barreira Hematoneural/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células Endoteliais/metabolismo , Humanos , Nervos Periféricos/metabolismo
20.
Hum Vaccin Immunother ; 14(11): 2568-2579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953326

RESUMO

Guillain-Barré syndrome (GBS), the most common cause of acute neuromuscular weakness and paralysis worldwide, encompasses a group of acute immune-mediated disorders restricted to peripheral nerves and roots. Immune-mediated attack of peripheral nervous system myelin, axons or both is presumed to be triggered by molecular mimicry, with both cell- and humoral-dependent mechanisms implicated in disease pathogenesis. Good circumstantial evidence exists for a pathogenic role for molecular mimicry in GBS pathogenesis, especially with its axonal forms, providing insights that could guide future immunotherapy. Intravenous immunoglobulin (IVIg) and plasma exchange (PE) are the most commonly prescribed immunotherapies for GBS with variable efficacy dependent on GBS subtype, severity at initial presentation and other clinical and electrophysiologic prognostic factors. The mechanisms of action of IVIg and PE are not known definitely. Despite recent significant advances in molecular biology that provide insights into GBS pathogenesis, no advances in therapeutics or significant improvements in patient outcomes have occurred over the past three decades. We summarize the clinical aspects of GBS, its current pathogenesis and immunotherapy, and highlight the potential of leukocyte trafficking inhibitors as novel disease-specific immunotherapeutic drugs.


Assuntos
Síndrome de Guillain-Barré/terapia , Imunoglobulinas Intravenosas/uso terapêutico , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Troca Plasmática , Quimiotaxia de Leucócito/efeitos dos fármacos , Quimiotaxia de Leucócito/imunologia , Síndrome de Guillain-Barré/complicações , Síndrome de Guillain-Barré/diagnóstico , Síndrome de Guillain-Barré/imunologia , Humanos , Fatores Imunológicos/farmacologia , Imunoterapia/tendências , Índice de Gravidade de Doença , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...