Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(6): 3053-3060, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38240331

RESUMO

Ligand-protected metal nanoclusters have emerged as a promising platform for providing sensitizers for triplet-triplet annihilation upconversion (TTA-UC). Herein, we report [PtAg28(BDT)12]4- (PtAg28; BDT = 1,3-benzenedithiolate) as a sensitizer enabling TTA-UC at low excitation intensities. PtAg28 exhibits a long-lived triplet state (approximately 7 µs) generated with a 100% intersystem crossing (ISC) quantum yield. The mechanism driving this efficient ISC was unveiled with the aid of theoretical calculations. Specifically, the S1-T1 ISC reveals a small spin-orbit coupling (SOC) matrix element, attributed to their similar electron configuration. In contrast, the T2 state, which is energetically close to S1, features a hole distribution derived from the Py superatomic orbital of the icosahedral Pt@Ag12 core. This distribution enables direct SOC based on the orbital angular momentum change from the S1 state with a Pz-derived hole distribution. Consequently, the efficient ISC was rationalized by the S1 → T2 → T1 pathway. The T1 state possesses a metal core-to-surface metal charge transfer character, facilitating triplet energy transfer and conferring superior sensitization ability. Leveraging these characteristics, the combination of PtAg28 sensitizer with a 9,10-diphenylanthracene annihilator/emitter attained an extremely low UC threshold of 0.81 mW cm-2 at 532 nm excitation, along with efficient green-to-blue TTA-UC with an internal quantum yield (ΦUCg) of 12.2% (50% maximum). This results in a pseudo-first-order TTA process with strong UC emission under 1-sun conditions.

2.
J Phys Chem Lett ; 13(40): 9272-9278, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36173370

RESUMO

Photoluminescence (PL) quenching of ligand-protected noble-metal clusters (NMCs) by molecular oxygen is often used to define whether the PL of NMC is fluorescent or phosphorescent, and only energy transfer has been always considered as the quenching mechanism. Herein, we performed the Rehm-Weller analysis of the O2-induced PL quenching of 13 different NMCs and found that the charge-transfer (CT)-mediated mechanism dominates the quenching process. The quenching rate constant showed a clear dependence on the CT driving force, varied markedly from 106 to 109 M-1s-1. Transient absorption spectroscopy and photon upconversion measurements confirmed the triplet sensitization of aromatic molecules by NMCs regardless of the quenching degree by O2, establishing that the PL of NMCs under investigation originates from the excited triplet state (i.e., phosphorescence). The results herein provide an essential indicator for correctly determining whether the PL of an NMC is fluorescent or phosphorescent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...