Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 5: 4426, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-25043379

RESUMO

The poly(adenosine diphosphate (ADP)-ribose) polymerase (PARP) protein family generates ADP-ribose (ADPr) modifications onto target proteins using NAD(+) as substrate. Based on the composition of three NAD(+) coordinating amino acids, the H-Y-E motif, each PARP is predicted to generate either poly(ADPr) (PAR) or mono(ADPr) (MAR). However, the reaction product of each PARP has not been clearly defined, and is an important priority since PAR and MAR function via distinct mechanisms. Here we show that the majority of PARPs generate MAR, not PAR, and demonstrate that the H-Y-E motif is not the sole indicator of PARP activity. We identify automodification sites on seven PARPs, and demonstrate that MAR and PAR generating PARPs modify similar amino acids, suggesting that the sequence and structural constraints limiting PARPs to MAR synthesis do not limit their ability to modify canonical amino-acid targets. In addition, we identify cysteine as a novel amino-acid target for ADP-ribosylation on PARPs.


Assuntos
Poli(ADP-Ribose) Polimerases/química , Poli(ADP-Ribose) Polimerases/metabolismo , Adenosina Difosfato Ribose/metabolismo , Motivos de Aminoácidos , Células Cultivadas , Cisteína/metabolismo , Humanos , Lisina/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética
2.
Genes Dev ; 23(5): 643-54, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19270162

RESUMO

The essential S-phase kinase Cdc7-Dbf4 acts at eukaryotic origins of replication to trigger a cascade of protein associations that activate the Mcm2-7 replicative helicase. Also known as Dbf4-dependent kinase (DDK), this kinase preferentially targets chromatin-associated Mcm2-7 complexes that are assembled on the DNA during prereplicative complex (pre-RC) formation. Here we address the mechanisms that control the specificity of DDK action. We show that incorporation of Mcm2-7 into the pre-RC increased the level and changes the specificity of DDK phosphorylation of this complex. In the context of the pre-RC, DDK preferentially targets a conformationally distinct subpopulation of Mcm2-7 complexes that is tightly linked to the origin DNA. This targeting requires DDK to tightly associate with Mcm2-7 complexes in a Dbf4-dependent manner. Importantly, we find that DDK association with and phosphorylation of origin-linked Mcm2-7 complexes require prior phosphorylation of the pre-RC. Our findings provide insights into the mechanisms that ensure that DDK action is spatially and temporally restricted to the origin-bound Mcm2-7 complexes that will drive replication fork movement during S phase and suggest new mechanisms to regulate origin activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Replicação do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Cromossômicas não Histona , Componente 7 do Complexo de Manutenção de Minicromossomo , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/genética
3.
Mol Simul ; 34(6-7): 715-725, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19300529

RESUMO

Haemoglobin I from Lucina pectinata is a monomeric protein consisting of 142 amino acids. Its active site contains a peculiar arrangement of phenylalanine residues (PheB10, PheCD1 and PheE11) and a distal Gln at position E7. Active site mutations at positions B10, E7 and E11 were performed in deoxy haemoglobin I (HbI), followed by 10 ns molecular dynamic simulations. The results showed that the mutations induced changes in domains far from the active site producing more flexible structures than the native HbI. Distance analyses revealed that the heme pocket amino acids at positions E7 and B10 are extremely sensitive to any heme pocket residue mutation. The high flexibility observed by the E7 position suggests an important role in the ligand binding kinetics in ferrous HbI, while both positions play a major role in the ligand stabilisation processes. Furthermore, our results showed that E11Phe plays a pivotal role in protein stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...