Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Obes Sci Pract ; 2(3): 318-329, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27708849

RESUMO

INTRODUCTION: n-3 Polyunsaturated fatty acids such as eicosapentaenoic acid (EPA), which are abundant in fish oil, have been shown to delay the onset of cardiovascular events. We previously established DahlS.Z-Leprfa/Leprfa (DS/obese) rats, which are derived from a cross between Dahl salt-sensitive and Zucker rats, as a model of metabolic syndrome. This study has now explored the influence of highly purified EPA on cardiac and adipose tissue pathophysiology in this animal model. MATERIALS AND METHODS: DS/obese rats were administered EPA (300 or 1,000 mg kg-1 d-1, per os) or vehicle from age 9 to 13 weeks. Homozygous lean (DahlS.Z-Lepr+/Lepr+, or DS/lean) littermates were studied as controls. RESULTS: Whereas EPA had no effect on body weight, food intake or systolic blood pressure in DS/obese rats, it attenuated cardiac fibrosis, diastolic dysfunction, oxidative stress and inflammation in these animals. In addition, EPA did not affect insulin resistance but reduced adipocyte hypertrophy and inflammation in visceral fat of DS/obese rats. Moreover, EPA increased circulating levels of adiponectin as well as attenuated both the down-regulation of AMP-activated protein kinase phosphorylation and the up-regulation of phosphorylation of the p65 subunit of nuclear factor-kB in the heart of DS/obese rats. CONCLUSIONS: Treatment of DS/obese rats with EPA did not affect hypertension but reduced cardiac fibrosis and diastolic dysfunction, with the latter effects being accompanied by AMP-activated protein kinase activation and inactivation of nuclear factor-kB signalling in the heart, possibly as a result of an increase in adiponectin secretion. EPA may be suitable for the treatment of cardiac injury associated with metabolic syndrome.

2.
Nutr Diabetes ; 6: e207, 2016 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-27110688

RESUMO

OBJECTIVES: Chronic stress affects the central nervous system as well as endocrine, metabolic and immune systems. However, the effects of cold stress on cardiovascular and metabolic disorders in metabolic syndrome (MetS) have remained unclear. We recently characterized DahlS.Z-Lepr(fa)/Lepr(fa) (DS/obese) rats, derived from a cross between Dahl salt-sensitive and Zucker rats, as a new animal model of MetS. We have now investigated the effects of chronic cold stress and glucocorticoid receptor (GR) blockade on cardiac and adipose tissue pathology as well as on metabolic parameters in this model. METHODS: DS/obese rats were exposed to cold stress (immersion in ice-cold water to a depth of 1-2 cm for 2 h per day) with or without subcutaneous injection of the GR antagonist RU486 (2 mg kg(-1)day(-1)) for 4 weeks beginning at 9 weeks of age. Age-matched homozygous lean (DahlS.Z-Lepr(+)/Lepr(+)) littermates served as a control. RESULTS: Chronic cold stress exacerbated hypertension as well as left ventricular (LV) hypertrophy, fibrosis and diastolic dysfunction in DS/obese rats in a manner sensitive to RU486 treatment. Cold stress with or without RU486 did not affect body weight or fat mass. In contrast, cold stress further increased cardiac oxidative stress as well as macrophage infiltration and proinflammatory gene expression in LV and visceral fat tissue, with all of these effects being attenuated by RU486. Cold stress also further increased GR and 11ß-hydroxysteroid dehydrogenase type 1 mRNA and protein abundance in LV and visceral adipose tissue, and these effects were again inhibited by RU486. In addition, RU486 ameliorated the stress-induced aggravation of dyslipidemia, glucose intolerance and insulin resistance in DS/obese rats. CONCLUSIONS: Our results implicate GR signaling in cold stress-induced exacerbation of cardiac and adipose tissue pathology as well as of abnormal glucose and lipid metabolism in a rat model of MetS.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Temperatura Baixa , Coração/efeitos dos fármacos , Mifepristona/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Estresse Fisiológico/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Fibrose/tratamento farmacológico , Intolerância à Glucose , Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/tratamento farmacológico , Hipertrofia Ventricular Esquerda/metabolismo , Masculino , Síndrome Metabólica/tratamento farmacológico , Ratos , Ratos Endogâmicos Dahl , Ratos Zucker , Receptores de Glucocorticoides/metabolismo , Receptores para Leptina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...