Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 17(8): e1009705, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34437539

RESUMO

Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis, belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene (amhr2bY) was found within these male-specific regions, distinct from the autosomal copy of amhr2. Expression of the Y-linked amhr2 gene was male-specific in sox9b-positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Osmeriformes/genética , Receptores de Peptídeos/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Sequenciamento Completo do Genoma/métodos , Animais , Feminino , Proteínas de Peixes/genética , Mutação com Perda de Função , Masculino , Caracteres Sexuais , Sintenia
2.
Curr Biol ; 29(11): 1901-1909.e8, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31130458

RESUMO

Vertebrate sex development consists largely of two processes: "sex determination," the initial bifurcation of sexual identity, and "sex differentiation," which subsequently facilitates maleness or femaleness according to the sex determination signal. Steroid hormones promote multiple types of sexual dimorphism in eutherian mammals and avians [1-3], in which they are indispensable for proper sex differentiation. By contrast, in many poikilothermic vertebrates, steroid hormones have been proposed to be key players in sex determination as well as sex differentiation [4-8]. This hypothesis was introduced more than 50 years ago but has never been rigorously tested due to difficulties in discriminating the roles of steroids in sex determination and differentiation. We found that a missense SNP in the gene encoding the steroidogenic enzyme 17ß-hydroxysteroid dehydrogenase 1 (Hsd17b1) was perfectly associated with ZZ/ZW sex determination in Seriola fishes. Biochemical analyses revealed that a glutamate residue present specifically in Z-type HSD17B1 attenuated interconversion between 17-keto and 17ß-hydroxy steroids relative to the allelic product from the W chromosome, which harbors glycine at that position, by disrupting the hydrogen bond network between the steroid and the enzyme's catalytic residues. Hsd17b1 mRNA is constitutively expressed in undifferentiated and differentiating gonads of both genotypic sexes, whereas W-type mRNA is expressed only in genotypic females. Meanwhile, Cyp19a1 is predominantly expressed in differentiating ovary. We conclude that the combination of Hsd17b1 alleles determines sex by modulating endogenous estrogen levels in Seriola species. These findings strongly support the long-standing hypothesis on steroids in sex determination.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Proteínas de Peixes/genética , Peixes/genética , Polimorfismo de Nucleotídeo Único , Diferenciação Sexual/genética , 17-Hidroxiesteroide Desidrogenases/química , 17-Hidroxiesteroide Desidrogenases/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Peixes/metabolismo , Peixes/crescimento & desenvolvimento , Fenótipo , Filogenia , Alinhamento de Sequência/veterinária , Processos de Determinação Sexual/genética
3.
Genome Announc ; 5(27)2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28684560

RESUMO

The lytic bacteriophage pT24, which infects Tenacibaculum spp., was isolated from the water of a whiteleg shrimp (Litopenaeus vannamei) culture pond in Thailand. This giant bacteriophage with myovirus morphology comprised 234,670 bp with 296 predicted genes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...