Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Res ; 531: 108888, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390793

RESUMO

Hyaluronan (HA), a member of the GAG family of glycans, has many diverse biological functions that vary a lot depending on the length of the HA chain and its concentration. A better understanding of the structure of different-sized HA at the atomic level is therefore crucial to decipher these biological functions. NMR is a method of choice for conformational studies of biomolecules, but there are limitations due to the low natural abundance of the NMR active nuclei 13C and 15N. We describe here the metabolic labeling of HA using the bacterium Streptococcus equi subsp. Zooepidemicus and the subsequent analysis by NMR and mass spectrometry. The level of 13C and 15N isotope enrichment at each position was determined quantitatively by NMR spectroscopy and was further confirmed by high-resolution mass spectrometry analysis. This study provides a valid methodological approach that can be applied to the quantitative assessment of isotopically labeled glycans and will help improve detection capabilities and facilitate future structure-function relationship analysis of complex glycans.


Assuntos
Ácido Hialurônico , Streptococcus equi , Ácido Hialurônico/química , Espectroscopia de Ressonância Magnética , Streptococcus equi/metabolismo , Polissacarídeos/metabolismo
2.
Vaccines (Basel) ; 9(6)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199173

RESUMO

Glycoproteins are processed endosomally prior to presentation to T cells and subsequent induction of specific antibodies. The sugar part of glycoconjugate may be degraded while the type of the process depends on the features of the particular structure. The generated carbohydrate epitopes may differ from native structures and influence immunogenicity of the antigens. We have devised a model of endosomal-like pre-processing of Bordetella pertussis 186 oligosaccharides (OSs) to verify how it affects the immunogenicity of their conjugates. The glycoconjugates of structurally defined forms of the dodecasaccharide OS were synthesized and their immunogenicity was assessed using immunochemical methods. The structural features of the oligosaccharides and their sensitivity to deamination were analyzed by NMR spectroscopy. The distal trisaccharide-comprising pentasaccharide conjugated to a protein was the most effective in inducing immune response against the B. pertussis 186 LOS and the immune response to the complete OS conjugates was significantly lower. This could be explained by the loss of the distal trisaccharide during the in-cell deamination process suggesting that the native structure is not optimal for a vaccine antigen. Consequently, our research has shown that designing of new glycoconjugate vaccines requires the antigen structures to be verified in context of possible endosomal reactions beforehand.

3.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494150

RESUMO

Bacterial pathogens expose on the cell surface a variety of complex carbohydrate molecules. Gram-negative bacteria produce lipopolysaccharides, which are the main components of the outer membrane of bacterial envelopes and play a major role in host-pathogen interactions. B. pertussis, B. parapertussis, B. bronchiseptica, and B. holmesii, are mammalian respiratory pathogens, having substantial economic impact on human health and agriculture. B. pertussis is responsible for whooping cough (pertussis) and B. holmesii is the second pertussis etiological factor, but the current anti-pertussis vaccines do not provide cross-protection. The structural data on any given hypothetical carbohydrate antigen is a prerequisite for further analysis of structure-related activities and their interaction with hosts. 1H NMR spectra constitute fingerprints of the analyzed glycans and provide unique identity information. The concept of structure-reporter groups has now been augmented by 1H,13C-correlation spectra of the Bordetella oligosaccharides. The comparative analysis of Bordetellae oligosaccharides (OS) revealed that the hexasaccharide, comprising the α-GlcpN, α-GlcpA, 4,6-disubstituted-ß-Glcp, 2,7-disubstituted-l-α-d-Hepp, 3,4-disubstituted-l-α-d-Hepp, and Kdo, constitute the least variable OS segment. This minimal common element in the structure of lipopolysaccharides of Bordetellae could be used to devise a universal cross-protective vaccine component against infections with various bacteria from the genus Bordetella.


Assuntos
Bordetella , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligossacarídeos/química , Polissacarídeos Bacterianos/química , Bordetella pertussis , Humanos , Oligossacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Análise Espectral , Coqueluche/microbiologia
4.
Int J Mol Sci ; 21(17)2020 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-32899371

RESUMO

Whooping cough is a highly contagious disease caused predominantly by Bordetella pertussis, but it also comprises of a pertussis-like illness caused by B. holmesii. The virulence factors of B. holmesii and their role in the pathogenesis remain unknown. Lipopolysaccharide is the main surface antigen of all Bordetellae. Data on the structural features of the lipopolysaccharide (LPS) of B. holmesii are scarce. The poly- and oligosaccharide components released by mild acidic hydrolysis of the LPS were separated and investigated by 1H and 13C NMR spectroscopy, mass spectrometry, and chemical methods. The structures of the O-specific polysaccharide and the core oligosaccharide of B. holmesii ATCC 51541 have been identified for the first time. The novel pentasaccharide repeating unit of the B. holmesii O-specific polysaccharide has the following structure: {→2)-α-l-Rhap-(1→6)-α-d-Glcp-(1→4)-[ß-d-GlcpNAc-(1→3]-α-d-Galp-(1→3)-α-d-GlcpNAc-(1→}n. The SDS-PAGE and serological cross-reactivities of the B. holmesii LPS suggested the similarity between the core oligosaccharides of B. holmesii ATCC 51541 and B. pertussis strain 606. The main oligosaccharide fraction contained a nonasaccharide. The comparative analysis of the NMR spectra of B. holmesii core oligosaccharide fraction with this of the B. pertussis strain 606 indicated that the investigated core oligosaccharides were identical.


Assuntos
Bordetella/química , Lipopolissacarídeos/química , Antígenos O/química , Oligossacarídeos/química , Coqueluche/metabolismo , Espectrometria de Massas , Coqueluche/microbiologia
5.
Int J Mol Sci ; 18(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186063

RESUMO

The high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (HR-MAS NMR) analysis of Plesiomonas shigelloides 78/89 lipopolysaccharide directly on bacteria revealed the characteristic structural features of the O-acetylated polysaccharide in the NMR spectra. The O-antigen profiles were unique, yet the pattern of signals in the, spectra along with their ¹H,13C chemical shift values, resembled these of d-galactan I of Klebsiella pneumoniae. The isolated O-specific polysaccharide (O-PS) of P. shigelloides strain CNCTC 78/89 was investigated by ¹H and 13C NMR spectroscopy, mass spectrometry and chemical methods. The analyses demonstrated that the P. shigelloides 78/89 O-PS is composed of →3)-α-d-Galp-(1→3)-ß-d-Galf2OAc-(1→ disaccharide repeating units. The O-acetylation was incomplete and resulted in a microheterogeneity of the O-antigen. This O-acetylation generates additional antigenic determinants within the O-antigen, forms a new chemotype, and contributes to the epitopes recognized by the O-serotype specific antibodies. The serological cross-reactivities further confirmed the inter-specific structural similarity of these O-antigens.


Assuntos
Klebsiella pneumoniae/química , Espectroscopia de Ressonância Magnética/métodos , Plesiomonas/química , Galactanos/química , Lipopolissacarídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...