Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 15(8): e44373, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37779741

RESUMO

Teratoma is a rare type of germ cell tumor that consists of structures derived from all three germ layers of the embryo with varying proportions. While most of these are benign, some can turn malignant. The most common location of teratomas is the sacrococcygeal region, while their occurrence in the neck region is very rare. Broadly classified, immature teratomas contain poorly differentiated tissues, while mature ones have well-differentiated tissues. Here, the authors present a case of a 12-month-old child who presented with a huge neck mass. Radiological imaging studies were performed. Under a multidisciplinary team approach, the child was treated successfully with surgical excision. Histopathology revealed the mass to be an immature teratoma of grade III. Postoperatively, no recurrence has been noted.

2.
Plant J ; 115(2): 351-368, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37009647

RESUMO

The architecture of the rice inflorescence is an important determinant of crop yield. The length of the inflorescence and the number of branches are among the key factors determining the number of spikelets, and thus grains, that a plant will develop. In particular, the timing of the identity transition from indeterminate branch meristem to determinate spikelet meristem governs the complexity of the inflorescence. In this context, the ALOG gene TAWAWA1 (TAW1) has been shown to delay the transition to determinate spikelet development in Oryza sativa (rice). Recently, by combining precise laser microdissection of inflorescence meristems with RNA-seq, we observed that two ALOG genes, OsG1-like 1 (OsG1L1) and OsG1L2, have expression profiles similar to that of TAW1. Here, we report that osg1l1 and osg1l2 loss-of-function CRISPR mutants have similar phenotypes to the phenotype of the previously published taw1 mutant, suggesting that these genes might act on related pathways during inflorescence development. Transcriptome analysis of the osg1l2 mutant suggested interactions of OsG1L2 with other known inflorescence architecture regulators and the data sets were used for the construction of a gene regulatory network (GRN), proposing interactions among genes potentially involved in controlling inflorescence development in rice. In this GRN, we selected the homeodomain-leucine zipper transcription factor encoding the gene OsHOX14 for further characterization. The spatiotemporal expression profiling and phenotypical analysis of CRISPR loss-of-function mutants of OsHOX14 suggests that the proposed GRN indeed serves as a valuable resource for the identification of new proteins involved in rice inflorescence development.


Assuntos
Inflorescência , Oryza , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Meristema
3.
Animals (Basel) ; 12(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36496813

RESUMO

Kari sheep inhabiting the Chitral district of Pakistan show variation in gestation length. In this study, we have analyzed the genetic differences between the three subtypes of Kari sheep (based on variation in gestation length) using microsatellite markers. Kari sheep samples were collected from their breeding tract and were characterized for gestation length and genetic diversity using microsatellite markers. A total of 78 Kari ewes were grouped into three categories based on gestation length (GL), i.e., Kari-S (with a shorter GL), Kari-M (with a medium GL), and Kari-L (with a longer GL). DNA from these samples was used to amplify 31 ovine-specific microsatellite loci through PCR. Of the total 78 Kari specimens, 24 were grouped in Kari-S (GL = 100.7 ± 1.8), 26 were from the Kari-M subtype (GL = 123.1 ± 1.0), and 28 were Kari-L (GL = 143.8 ± 1.5). Microsatellite analysis revealed an association of genotypes at two marker sites (MAF214 and ILSTS5) with variation in GL. A total of 158 alleles were detected across the 22 polymorphic loci with an average of 7.18 alleles per locus. Unique alleles were found in all three subtypes. The highest number of unique alleles was observed in Kari-L (15), followed by Kari-S (10) and Kari-M (8). The results indicated that Kari-S is a genetically distinct subtype (with higher genetic differentiation and distance) from Kari-M and Kari-L. The genetic uniqueness of Kari-S is important for further exploration of the genetic basis for shorter gestation length, and exploitation of their unique values.

4.
Materials (Basel) ; 15(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295118

RESUMO

Considering that the machining of composites particularly fiber-reinforced polymer composites (FRPCs) has remained a challenge associated with their heterogeneity and anisotropic nature, damage caused by drilling operations can be considerably mitigated by following optimum cutting parameters. In this work, we numerically evaluated the effects of cutting parameters, such as feed rate and spindle speed, on the thrust force and torque during the drilling of glass-fiber-reinforced polymers (GFRPs). A meso-scale, also known as unidirectional ply-level-based finite element modeling, was employed assuming an individual homogenized lamina with transversely isotropic material principal directions. To initiate the meso-scale damage in each lamina, 3D formulations of Hashin's failure theory were used for fiber damage and Puck's failure theory was implemented for matrix damage onset via user subroutine VUMAT in ABAQUS. The developed model accounted for the complex kinematics taking place at the drill-workpiece interface and accurately predicted the thrust force and torque profiles as compared with the experimental results. The thrust forces for various drilling parameters were predicted with a maximum of 10% error as compared with the experimental results. It was found that a combination of lower feed rates and higher spindle speeds reduced the thrust force, which in turn minimized the drilling-induced damage, thus providing useful guidelines for drilling operations with higher-quality products. Finally, the effect of coefficient of friction was also investigated. Accordingly, a higher coefficient of friction between the workpiece and drill-bit reduced the thrust force.

5.
PLoS One ; 17(5): e0264453, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35511817

RESUMO

Soybean is a legume crop enriched with proteins and oil. It is frequently exposed to anthropogenic and natural flooding that limits its growth and yield. Current study applied gel-free proteomic techniques to unravel soybean response mechanism to flooding stress. Two-days-old soybeans were flooded for 4 days continuously and root samples were collected at days 2 to 6 for proteomic and enzymatic analyses. Age-matched untreated soybeans were collected as control. After protein extraction, purification and tryptic digestion, the peptides were analyzed on nano-liquid chromatography-mass spectrometry. A total of 539 and 472 proteins with matched peptides 2 or more were identified in control and flooded seedlings, respectively. Among these 364 proteins were commonly identified in both control and flooded soybeans. Fourty-two protein's abundances were changed 4-fold after 2-days of flooding stress as compared to starting point. The cluster analysis showed that highly increased proteins included cupin family proteins, enolase, pectin methylesterase inhibitor, glyoxalase II, alcohol dehydrogenase and aldolase. The enzyme assay of enolase and pectin methylesterase inhibitor confirmed protein abundance changes. These findings suggest that soybean adopts the less energy consuming strategies and brings biochemical and structural changes in the cell wall to effectively respond to flooding stress and for the survival.


Assuntos
Glycine max , Proteômica , Parede Celular/metabolismo , Metabolismo Energético , Inundações , Regulação da Expressão Gênica de Plantas , Fosfopiruvato Hidratase/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Proteômica/métodos , Glycine max/metabolismo , Estresse Fisiológico
6.
Mol Biol Rep ; 48(11): 7179-7192, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34554387

RESUMO

BACKGROUND: Knowledge of the genetic diversity and population structure of germplasm collections is an important foundation for crop improvement. Rice production across a broad range of rice-growing environments results in a diverse array of local rice varieties. Many rice varieties have been lost as a result of biodiversity loss and are now grown in Pakistan. METHODS AND RESULTS: To protect the biodiversity of rice varieties, an experiment was carried out to check the genetic and morphological variations between 8 exotic and 7 local rice genotypes, using 5 different SSR markers, i.e., RM3, RM259, RM341, RM520, and RM11943. The analysis of morphological and quality traits of rice observed significant variation across genotypes. The results revealed that genotype Irri-Pak attained the highest plant height and primary branch plant-1, while genotype Mushkan produced a higher number of productive tillers and obtained a higher fertility factor (%). Similarly, the highest value for panicle length was observed for genotype Faker-e-Malakand, 1000-grains weight in genotype Calmochi, and maximum days to maturity was noticed in genotype Swati-2014. Moreover, the genotype Brio attained the highest value of stem diameter, while maximum seed length was noted in the genotype Sug Dasi. The highest number of primary branches plant-1 in genotype Ibge-I and secondary branches plant-1 in genotype Calmochi were noticed. A higher concentration of sodium and potassium was observed for the genotype Marte, while the genotype Muskan attained the maximum content of copper. Moreover, the highest concentration of iron in genotype Originario, zinc in genotype JP-5, and cadmium content were noticed in genotype Ibge. Similarly, the dendrogram analysis for quantitative parameters showed three clusters at 74.13% similarities. Whereas all the genotypes of European origin formed a separate cluster. A set of 5 simple sequence repeat primers, covering four chromosomes, amplified a total of 14 alleles and showed 100% polymorphism with an average PIC value ranging from 0.39 to 0.91. The UPGMA cluster analysis separated the 15 rice genotypes into 3 main groups based on 32.5% similarities and the highest genetic distance (45.1%) was observed between two genotypes (Fakher-e-malakand and Musa), having different geographical origins. There was no genetic distance between the genotypes Marte and Brio, irrespective of having the same origin. CONCLUSIONS: The maximum genetic distances were noted for genotype, Fakhre-e-Malakand and Musa having a different origin, while the minimum genetic distance was shown by genotypes, Marte and Onice, from the same origin.


Assuntos
Repetições de Microssatélites , Oryza/genética , Filogenia , Polimorfismo Genético
7.
Front Plant Sci ; 11: 601, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32547573

RESUMO

In conventional tea plantations, a large amount of pruned material returns to the soil surface, putting a high quantity of polyphenols into the soil. The accumulation of active allelochemicals in the tea rhizosphere and subsequent shift in beneficial microbes may be the cause of acidification, soil sickness, and regeneration problem, which may be attributed to hindrance of plant growth, development, and low yield in long-term monoculture tea plantation. However, the role of pruning leaf litter in soil sickness under consecutive tea monoculture is unclear. Here, we investigated soil samples taken from conventional tea gardens of different ages (2, 15, and 30 years) and under the effect of regular pruning. Different approaches including liquid chromatography-mass spectrometry (LC-MS) analysis of the leaf litter, metagenomic study of root-associated bacterial communities, and in vitro interaction of polyphenols with selected bacteria were applied to understand the effect of leaf litter-derived polyphenols on the composition and structure of the tea rhizosphere microbial community. Our results indicated that each pruning practice returns a large amount of leaf litter to each tea garden. LC-MS results showed that leaf litter leads to the accumulation of various allelochemicals in the tea rhizosphere, including epigallocatechin gallate, epigallocatechin, epicatechin gallate, catechin, and epicatechin with increasing age of the tea plantation. Meanwhile, in the tea garden grown consecutively for 30 years (30-Y), the phenol oxidase and peroxidase activities increased significantly. Pyrosequencing identified Burkholderia and Pseudomonas as the dominant genera, while plant growth-promoting bacteria, especially Bacillus, Prevotella, and Sphingomonas, were significantly reduced in the long-term tea plantation. The qPCR results of 30-Y soil confirmed that the copy numbers of bacterial genes per gram of the rhizosphere soil were significantly reduced, while that of Pseudomonas increased significantly. In vitro study showed that the growth of catechin-degrading bacteria (e.g., Pseudomonas) increased and plant-promoting bacteria (e.g., Bacillus) decreased significantly with increasing concentration of these allelochemicals. Furthermore, in vitro interaction showed a 0.36-fold decrease in the pH of the broth after 72 h with the catechin degradation. In summary, the increase of Pseudomonas and Burkholderia in the 30-Y garden was found to be associated with the accumulation of catechin substrates. In response to the long-term monoculture of tea, the variable soil pH along with the litter distribution negatively affect the population of plant growth-promoting bacteria (e.g., Sphingomonas, Bacillus, and Prevotella). Current research suggests that the removal of pruned branches from tea gardens can prevent soil sickness and may lead to sustainable tea production.

8.
Front Microbiol ; 10: 2623, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798559

RESUMO

Availability of nitrogen (N) in soil changes the composition and activities of microbial community, which is critical for the processing of soil organic matter and health of crop plants. Inappropriate application of N fertilizer can alter the rhizosphere microbial community and disturb the soil N homeostasis. The goal of this study was to assess the effect of different ratio of N fertilizer at various early to late growth stages of rice, while keeping the total N supply constant on rice growth performance, microbial community structure, and soil protein expression in rice rhizosphere. Two different N regimes were applied, i.e., traditional N application (NT) consists of three sessions including 60, 30 and 10% at pre-transplanting, tillering and panicle initiation stages, respectively, while efficient N application (NF) comprises of four sessions, i.e., 30, 30, 30, and 10%), where the fourth session was extended to anthesis stage. Soil metaproteomics combined with Terminal Restriction Fragment Length Polymorphism (T-RFLP) were used to determine the rhizosphere biological process. Under NF application, soil enzymes, nitrogen utilization efficiency and rice yield were significantly higher compared to NT application. T-RFLP and qPCR analysis revealed differences in rice rhizosphere bacterial diversity and structure. NF significantly decreased the specific microbes related to denitrification, but opposite result was observed for bacteria associated with nitrification. Furthermore, soil metaproteomics analysis showed that 88.28% of the soil proteins were derived from microbes, 5.74% from plants, and 6.25% from fauna. Specifically, most of the identified microbial proteins were involved in carbohydrate, amino acid and protein metabolisms. Our experiments revealed that NF positively regulates the functioning of the rhizosphere ecosystem and further enabled us to put new insight into microbial communities and soil protein expression in rice rhizosphere.

9.
Plant J ; 86(1): 75-88, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26932536

RESUMO

In rice, inflorescence architecture is established at early stages of reproductive development and contributes directly to grain yield potential. After induction of flowering, the complexity of branching, and therefore the number of seeds on the panicle, is determined by the activity of different meristem types and the timing of transitions between them. Although some of the genes involved in these transitions have been identified, an understanding of the network of transcriptional regulators controlling this process is lacking. To address this we used a precise laser microdissection and RNA-sequencing approach in Oryza sativa ssp. japonica cv. Nipponbare to produce quantitative data that describe the landscape of gene expression in four different meristem types: the rachis meristem, the primary branch meristem, the elongating primary branch meristem (including axillary meristems), and the spikelet meristem. A switch in expression profile between apical and axillary meristem types followed by more gradual changes during transitions in axillary meristem identity was observed, and several genes potentially involved in branching were identified. This resource will be vital for a mechanistic understanding of the link between inflorescence development and grain yield.


Assuntos
Regulação da Expressão Gênica de Plantas , Microdissecção e Captura a Laser/métodos , Oryza/genética , Proteínas de Plantas/genética , Perfilação da Expressão Gênica , Inflorescência/genética , Inflorescência/fisiologia , Meristema/genética , Meristema/fisiologia , Análise em Microsséries , Oryza/citologia , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Reprodução , Sementes/genética , Sementes/metabolismo , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...