Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38876439

RESUMO

External and internal factors are involved in controlling the growth of fishes. However, little is known about the mechanisms by which external factors trigger stimulus signals. This study explored the physiological roles of melatonin in the transcription of growth-related genes in the brain and liver of Chrysiptera cyanea, a tropical damselfish with long-day preference. In brain samples of this species collected at 4-h intervals, the transcript levels of arylalkylamine N-acetyltransferase2 (aanat2), the rate-limiting enzyme of melatonin synthesis, and growth hormone (gh) peaked at 20:00 and 00:00, respectively. Concomitantly, the transcript levels of insulin-like growth factors (igf1 and igf2) in the brain and liver were upregulated during the scotophase. Levels of iodothyronine deiodinases (dio2 and dio3), enzymes that convert thyroxine (T4) to triiodothyronine (T3) and reverse T3, respectively, increased in the brain (dio2 and dio3) and liver (dio2) during the photophase, whereas dio3 levels in the liver showed the opposite trend. Fish reared in melatonin-containing water exhibited significant increases in the transcription levels of gh and igf1 in the brain and igf1 in the liver, suggesting that growth in this fish is positively regulated by the GH/IGF pathway on a daily basis. Melatonin treatment also stimulated the transcript levels of dio2 and dio3 in the liver, but not in the brain. Fish consuming pellets containing T3, but not T4, showed significant increases in gh and igf1 in the brain and igf1 and igf2 in the liver, suggesting that the intercellular actions of the TH/IGF pathway have an impact on growth on a daily basis. In summary, IGF synthesis and action in the brain and liver undergo dual regulation by distinct hormone networks, which may also be affected by daily, seasonal, or nutritional factors.

2.
J Exp Zool A Ecol Integr Physiol ; 341(4): 389-399, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38334250

RESUMO

Japanese eel (Anguilla japonica) is a commercially important fish species in Asia. Understanding factors like photoperiod, temperature, and lunar cycles is crucial for successful aquaculture and managing its reproduction. Melatonin and dopamine (DA) are essential for regulating reproduction in vertebrates, including fish. This study investigated the effects of melatonin and DA on the reproductive system of mature male Japanese eels to better understand reproductive regulation in fish. To clarify the effects of these hormones on sexual maturation in eels, a critical stage in the reproductive process, sexual maturation was induced by injecting human chorionic gonadotropin, which stimulates the production of sex hormones. To check the effect of melatonin and DA on sexual maturation, DA, melatonin, and DA + domperidone were intraperitoneally injected into fish from each group (six per treatment) at a dose of 1 mg/kg body weight. The fish were then examined using quantitative RT-PCR by comparing the messenger RNA level of reproduction-related genes (gonadotropin releasing hormone 1; gnrh1, gonadotropin releasing hormone 2; gnrh2, follicle stimulating hormone; fshß, luteinizing hormone; lhß and DA receptor 2b; d2b), involved in the gonadotropic axis in eels, to those that received a control injection. The results indicate significant differences in the expression levels of gnrh1, gnrh2 and d2b in the brain and d2b, fshß, lhß in the pituitary at different stages of sexual maturation. Melatonin appears to enhance the production of sex gonadotropins, whereas DA inhibits them. These findings suggest an interaction between melatonin and DA in regulating reproduction in Japanese eels.


Assuntos
Anguilla , Melatonina , Humanos , Masculino , Animais , Anguilla/genética , Anguilla/metabolismo , Melatonina/farmacologia , Dopamina/farmacologia , Dopamina/metabolismo , Maturidade Sexual , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37269939

RESUMO

Salinity, a determining factor in aquatic environments, influences fish growth. Here, we evaluated the effect of salinity on osmoregulation and growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, a species of high commercial value in Asian markets; we also identified the salinity that maximized this species' growth rate. Fish were reared at 26 °C and under a 14:10 h photoperiod with a salinity of 5 psu, 11 psu, 22 psu, or 34 psu for 8 weeks. Change in salinity had minimal impact on the plasma Na+ and glucose concentrations, although the Na+/K+-ATPase (nkaα and nkaß) transcript levels in the gills were significantly lower among fish reared at 11 psu salinity. Concomitantly, oxygen consumption was low in fish reared at 11 psu salinity. The feed conversion ratio (FCR) was lower in fish reared at 5 psu and 11 psu salinities than at 22 psu and 34 psu salinities. However, the specific growth rate (SGR) was higher in fish reared at 11 psu salinity. These results suggest that rearing fish at 11 psu salinity would decrease energy consumption for respiration and improve food-conversion efficiency. Among fish reared at 11 psu salinity, the transcript levels of growth hormone (gh) in the pituitary, as well as its receptor (ghr) and insulin-like growth factor I (igf-1) in the liver, were upregulated; these findings suggested stimulation of the growth axis at low salinity. In contrast, there were minimal differences in the transcript levels of neuropeptide Y (npy) and pro-opiomelanocortin (pomc) in the brains of fish reared at any salinity, suggesting that salinity does not affect appetite. Therefore, growth performance is higher in fish reared at 11 psu salinity because of activation of the GH-IGF system, but not appetite, in Malabar grouper juveniles.


Assuntos
Bass , Animais , Bass/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Osmorregulação , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Equilíbrio Hidroeletrolítico , Salinidade
4.
J Fish Biol ; 97(4): 1027-1038, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32648600

RESUMO

Fish that inhabit shallow water are exposed to periodic changes in tidal cues, including hydrostatic pressure (HP). The present study aimed at verifying differentially expressed genes (DEGs) in the brain of the threespot wrasse Halichoeres trimaculatus (tropical species) and the honbera wrasse Halichoeres tenuispinis (temperate species), both of which were exposed to HP at 30 kPa (possible high-tide stimuli in the field) or 1 kPa (low tide) for 3 or 6 h. A de novo assembly yielded 174,710 contigs (63,530 contigs were annotated) from the brain of threespot wrasse. Following RNA sequencing, quantitative PCR confirmed DEGs that were upregulated [AT atypical cadherin 2 (FAT2)] and downregulated [neuronal leucine-rich repeat protein 3 (LRRN3), dual specificity tyrosine phosphorylation-regulated kinase 1 (DYRK), mitogen-activated protein kinase kinase 1 (MAP2K1) and phosphoinositide 3 kinase (PI3K)]. The effect of HP on the transcription of these DEGs (except for MAP2K1) disappeared within 6 h, suggesting that HP is a transitory stimulus occurring at the beginning of the tidal cycle. Similar DEG transcription was observed in the brain of honbera wrasse maintained under HP for 6 h. In situ hybridization of the brain of the threespot wrasse revealed that strong signals of MPA2K1 were seen in the telencephalon, diencephalon and pituitary, whereas those of PI3K were seen in the telencephalon, diencephalon and medulla oblongata. This result suggests that these kinases are involved in sensory function (telencephalon), somatic and visceral function (medullar oblongata) and the neuroendocrine system (diencephalon and pituitary), all of which were related to changes in HP stimuli. Following HP exposure, the transcription of c-fos increased in the pituitary of honbera wrasse, suggesting that external stimuli directly or indirectly activate hormone synthesis at the hypothalamic-pituitary-gonadal axis. It is concluded that HP alters gene expression in relation to neural development and function in the central nervous system and plays a role in exerting tidal-related reproduction and feeding in wrasses.


Assuntos
Peixes/fisiologia , Regulação da Expressão Gênica , Pressão Hidrostática , Reprodução , Animais , Encéfalo/metabolismo , Caderinas/genética , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Glicoproteínas de Membrana/genética , Perciformes/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Hipófise/metabolismo , Proteínas Quinases/genética , Reprodução/fisiologia
5.
Gen Comp Endocrinol ; 285: 113264, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31469997

RESUMO

Thyroid hormone (TH) is involved in regulating the reproduction of vertebrates. Its physiological action in the target tissues is due to the conversion of TH by iodothyronine deiodinases. In this study, we aimed to clone and characterize type 2 (sdDio2) and type 3 (sdDio3) of the sapphire devil Chrysiptera cyanea, a tropical damselfish that undergoes active reproduction under long-day conditions, and to study the involvement of THs in the ovarian development of this species. When the cDNAs of sdDio2 and sdDio3 were partially cloned, they had deduced amino acid sequences of lengths 271 and 267, respectively, both of which were characterized by one selenocysteine residue. Real-time quantitative PCR (qPCR) revealed that both genes are highly expressed in the whole brain, and sdDio2 and sdDio3 are highly transcribed in the liver and ovary, respectively. In situ hybridization analyses showed positive signals of sdDio2 and sdDio3 transcripts in the hypothalamic area of the brain. Little change in mRNA abundance of sdDio2 and sdDio3 in the brain was observed during the vitellogenic phases. It is assumed that simultaneous activation and inactivation of THs occur in this area because oral administration of triiodothyronine (T3), but not of thyroxine (T4), upregulated mRNA abundance of both genes in the brain. The transcript levels of sdDio2 in the liver and sdDio3 in the ovary increased as vitellogenesis progressed, suggesting that, through the metabolism of THs, sdDio2 and sdDio3 play a role in vitellogenin synthesis in the liver and yolk accumulation/E2 synthesis in the ovary. Taken together, these results suggest that iodothyronine deiodinases act as a driver for vitellogenesis in tropical damselfish by conversion of THs in certain peripheral tissues.


Assuntos
Perfilação da Expressão Gênica , Iodeto Peroxidase/genética , Perciformes/genética , Clima Tropical , Vitelogênese/genética , Animais , Feminino , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Iodeto Peroxidase/metabolismo , Ovário/efeitos dos fármacos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Perciformes/metabolismo , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Hormônios Tireóideos/administração & dosagem , Hormônios Tireóideos/farmacologia , Distribuição Tecidual , Vitelogênese/efeitos dos fármacos
6.
J Neurosci Methods ; 328: 108416, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472188

RESUMO

BACKGROUND: Micro-computed tomography (CT) is a non-invasive technique that is used to obtain three-dimensional (3D) images of tissue structure in small animals. Compared with extensive mammal studies, few 3D imaging studies of fish have been conducted using micro-CT. An optimized method for imaging fish tissue structure is necessary, because they have adapted to diverse environments via functional and structural specialization. NEW METHOD: Brains of three species with different sizes and habitats were fixed in 4% paraformaldehyde and immersed in non-ionic iodinated contrast agent (Iopamiron). We examined the relationship between Iopamiron concentration and immersion time to determine universally optimal conditions for use in fish. RESULTS: We reconstructed 3D images of whole fish brains from cross-sections of brains from the Malabar grouper (Epinephelus malabaricus), bastard halibut (Paralichthys olivaceus), and threespot wrasse (Halichoeres trimaculatus). Developmental changes in brain structure were observed in the bastard halibut. Most brain regions of the threespot wrasse were distinguishable, although inner regions of the brain were less visible. COMPARISON WITH EXISTING METHODS: Histological techniques are typically used to observe fish brain structure, despite its drawbacks in terms of tissue sample preparation (shrinkage and distortion) and image capture (3D image constriction). The technique examined in the present study solves these problems and allows for the simultaneous handling of multiple specimens. CONCLUSION: Micro-CT imaging is suitable for observing the surfaces and inner structures of fish of various species.


Assuntos
Encéfalo , Peixes , Microtomografia por Raio-X/normas , Animais , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Peixes/anatomia & histologia , Peixes/crescimento & desenvolvimento , Técnicas Histológicas , Processamento de Imagem Assistida por Computador , Reprodutibilidade dos Testes
7.
Gen Comp Endocrinol ; 280: 9-14, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30928541

RESUMO

Recent studies have revealed that, in addition to regulating the circadian system, clock genes such as cryptochrome (Cry) genes are involved in seasonal and lunar rhythmicity in fish. This study clarified the transcriptional characteristics of a Cry subtype (mgCry2) in the brain of the Malabar grouper, Epinephelus malabaricus, which is an important aquaculture species that spawns around the new moon. The cDNA sequence of mgCry2 showed high identity (97-99%) with fish Cry2 and had an open reading frame encoding a protein with 170 amino acids. Phylogenetic analyses revealed that mgCRY2 had high identity with CRY in other fish species. Real-time quantitative polymerase chain reaction (qPCR) showed the widespread distribution of mgCry2 in neural (brain, pituitary, and retina) and peripheral (heart, liver, kidney, spleen, gill, intestine, and ovary) tissues. When immature Malabar groupers were reared under a light-dark cycle (LD = 12:12) and the amounts of mgCry2 mRNA in the telencephalon and diencephalon were measured at 4-h intervals, the levels increased during photophase and decreased during scotophase. Day-night variation in mgCry2 mRNA abundance was also observed in the pituitary. These daily profiles suggest that mgCry2 is a light-responsive gene in neural tissues. In situ hybridization analyses showed that mgCry2 was strongly transcribed in the nucleus lateralis tuberis of the ventral hypothalamus, peripheral area of the proximal pars distalis, and the pars intermedia of the pituitary. We conclude that clock genes expressed in the pituitary and diencephalon play a role in entraining the endocrine network of the Malabar grouper to periodic changes in external cues.


Assuntos
Bass/genética , Encéfalo/metabolismo , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Hipófise/metabolismo , Animais , Proteínas CLOCK/metabolismo , DNA Complementar/genética , Feminino , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...