Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Psychiatry Res ; 298: 113818, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33639407

RESUMO

Rap guanine nucleotide exchange factor 1 (RAPGEF1) is involved in cell adhesion and neuronal migration. Previously we found lower RAPGEF1 mRNA levels in Brodmann's area (BA) 9 in subjects with schizophrenia compared to controls. This study aimed to determine whether RAPGEF1 expression was altered in other brain regions implicated in schizophrenia and whether this was associated with suicide. Using qPCR, we measured the levels of RAPGEF1 in post-mortem BA 8 and 44 from 27 subjects with schizophrenia and 26 non-psychiatric control subjects. To address the effect of antipsychotic treatments, Rapgef1 mRNA levels were measured in the cortex from rats treated with typical antipsychotic drugs. There was no difference in RAPGEF1 normalised relative expression levels in BA 8 or 44. However, in BA 8, schizophrenia subjects had higher raw Ct RAPGEF1 levels compared to controls. There were higher RAPGEF1 levels in suicide completers compared to non-suicide schizophrenia subjects in BA 8. Rapgef1 expression levels in the rat cortex did not vary with antipsychotic treatment. Our findings suggest changes in RAPGEF1 expression may be limited to the dorsolateral prefrontal cortex from subjects with schizophrenia. Further investigation of the function of RAPGEF1 may lead to a greater understanding of the pathophysiology of schizophrenia.


Assuntos
Antipsicóticos , Esquizofrenia , Suicídio , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Córtex Cerebral , Córtex Pré-Frontal , Ratos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
2.
J Psychiatr Res ; 123: 151-158, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32065951

RESUMO

Excitatory amino acid transporter (EAAT)1 and EAAT2 mediate glutamatergic neurotransmission and prevent excitotoxicity through binding and transportation of glutamate into glia. These EAATs may be regulated by metabotropic glutamate receptor 5 (mGluR5), which is also expressed by glia. Whilst we have data from an Affymetrix™ Human Exon 1.0 ST Array showing higher levels of EAAT1 mRNA (+36%) in Brodmann's are (BA)9 of subjects with schizophrenia, there is evidence that EAAT1 and EAAT2, as well as mGluR5 levels, are altered in the cortex of subjects with the disorder. Hence, we measured mRNA levels of these genes in other cortical regions in subjects with that disorder. EAAT1, EAAT2 and mGluR5 mRNA were measured, in triplicate, using Quantitative PCR in BA10 and BA46 from subjects with schizophrenia (n = 20) and age and sex matched controls (n = 18). Levels of mRNA were normalised to the geometric mean of two reference genes, transcription factor B1, mitochondrial (TFB1M) and S-phase kinase-associated protein 1A (SKP1A), for which mRNA did not vary between diagnostic groups in either region. Normalised levels of EAAT1 and EAAT2 mRNA were significantly higher in BA10 (EAAT1: U = 58, p = 0.0002; EAAT2 U = 70, p = 0.0009), but not BA46 (EAAT1: U = 122, p = 0.09; EAAT2: U = 136, p = 0.21), from subjects with schizophrenia compared to controls. mGluR5 levels in BA10 (U = 173, p=0.85) and BA46 (U = 178, p = 0.96) did not vary by cohort. Our data suggests that region-specific increases in cortical EAAT1 and EAAT2 mRNA are involved in schizophrenia pathophysiology and that disrupted glutamate uptake in schizophrenia may be of particular significance in BA10.


Assuntos
Transportador 1 de Aminoácido Excitatório , Esquizofrenia , Sistema X-AG de Transporte de Aminoácidos , Transportador 1 de Aminoácido Excitatório/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico , Humanos , Córtex Pré-Frontal/metabolismo , RNA Mensageiro , Esquizofrenia/genética
3.
Brain Sci ; 10(2)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079174

RESUMO

Ovarian hormones, such as estrogens and progesterone, are known to exert beneficial effects on cognition and some psychiatric disorders. The basis of these effects is not fully understood, but may involve altered cholinergic neurotransmission. This study aimed to investigate how a lack of ovarian hormones would impact muscarinic receptor-induced deficits in prepulse inhibition (PPI) and muscarinic receptor density in several brain regions. Adult female rats were either ovariectomized, to remove the source of ovarian hormones, or left intact (sham-operated). PPI is a measure of sensorimotor gating that is typically impaired in schizophrenia patients, and similar deficits can be induced in rats by administering scopolamine, a muscarinic receptor antagonist. Our results revealed no significant effects of ovariectomy on PPI after saline or scopolamine treatment. Autoradiography was performed to measure cholinergic muscarinic receptor binding density using [3H]-pirenzepine, [3H]-AF-DX, and [3H]-4-DAMP, to label M1, M2/M4, and M3 receptors, respectively. We examined the amygdala, caudate putamen, dorsal hippocampus, motor cortex, retrosplenial cortex, and ventromedial hypothalamus. There were no significant group differences in any region for any muscarinic receptor type. These results suggest that removing peripheral ovarian hormones does not influence the cholinergic muscarinic receptor system in the context of PPI or receptor binding density.

4.
World J Biol Psychiatry ; 21(10): 775-783, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-29956574

RESUMO

OBJECTIVES: To create a gene expression signature (GES) to represent the biological effects of a combination of known drugs for bipolar disorder (BD) on cultured human neuronal cells (NT2-N) and rat brains, which also has evidence of differential expression in individuals with BD. To use the GES to identify new drugs for BD using Connectivity Map (CMap).Methods: NT2-N (n = 20) cells and rats (n = 8) were treated with a BD drug combination (lithium, valproate, quetiapine and lamotrigine) or vehicle for 24 and 6 h, respectively. Following next-generation sequencing, the differential expression of genes was assessed using edgeR in R. The derived GES was compared to differentially expressed genes in post-mortem brains of individuals with BD. The GES was then used in CMap analysis to identify similarly acting drugs.Results: A total of 88 genes showed evidence of differential expression in response to the drug combination in both models, and therefore comprised the GES. Six of these genes showed evidence of differential expression in post-mortem brains of individuals with BD. CMap analysis identified 10 compounds (camptothecin, chlorambucil, flupenthixol, valdecoxib, rescinnamine, GW-8510, cinnarizine, lomustine, mifepristone and nimesulide) acting similarly to the BD drug combination.Conclusions: This study shows that GES and CMap can be used as tools to repurpose drugs for BD.


Assuntos
Transtorno Bipolar , Reposicionamento de Medicamentos , Preparações Farmacêuticas , Animais , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/genética , Lamotrigina , Fumarato de Quetiapina , Ratos , Transcriptoma
5.
World J Biol Psychiatry ; 21(5): 402-408, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-30501451

RESUMO

Objectives: ATPase Type 13A4 (ATP13A4) is a cation-transporting, P5-type ATPase that has been implicated in neurodevelopmental disorders. Our recent microarray study reported a significant increase in ATP13A4 mRNA levels in Brodmann's area (BA) nine in subjects with schizophrenia compared to controls. Following this discovery we have sought to determine whether ATP13A4 expression was altered in other regions of the CNS that are affected in schizophrenia.Methods: Quantitative PCR was used to measure the levels of ATP13A4 in BA 44 and BA 8, collected post-mortem, from 30 subjects with schizophrenia and 30 non-psychiatric control subjects. To address the potential confound of antipsychotic medication on our data, qPCR was used to measure Atp13a4 levels in rats treated with haloperidol.Results: There was a 2.6-fold increase in ATP13A4 expression (P < 0.001) in BB 44 from subjects with schizophrenia. Results from BA 8 were less clear. ATP13A4 levels were not affected by antipsychotic treatment.Conclusions: Our findings suggest ATP13A4 is involved in the pathophysiology of schizophrenia. The increase in ATP13A4 contrasts genetic studies that report ATP13A4 gene deletions in patients with schizophrenia. A greater understanding of the function of ATP13A4 in the CNS may lead to improved treatment strategies for the symptoms of schizophrenia.


Assuntos
Adenosina Trifosfatases/genética , Antipsicóticos , Área de Broca , Esquizofrenia , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Humanos , RNA Mensageiro/genética , Ratos , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
6.
Aust N Z J Psychiatry ; 53(12): 1189-1198, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31238704

RESUMO

BACKGROUND: Mood disorders likely occur in someone with a genetic predisposition who encounters a deleterious environmental factor leading to dysregulated physiological processes due to genetic mutations and epigenetic mechanisms altering gene expression. To gain data to support this hypothesis, we measured levels of gene expression in three cortical regions known to be affected by the pathophysiologies of major depression and bipolar disorders. METHODS: Levels of RNA were measured using the Affymetrix™ Human Exon 1.0 ST Array in Brodmann's areas 9, 10 and 33 (left hemisphere) from individuals with major depression, bipolar disorder and age- and sex-matched controls with changed expression taken as a fold change in RNA ⩾1.2 at p < 0.01. Data were analysed using JMP® genomics 6.0 and the probable biological consequences of changes in gene expression determined using Core and Pathway Designer Analyses in Ingenuity Pathway Analysis. RESULTS: There were altered levels of RNA in Brodmann's area 9 (major depression = 424; bipolar disorder = 331), Brodmann's area 10 (major depression = 52; bipolar disorder = 24) and Brodmann's area 33 (major depression = 59 genes; bipolar disorder = 38 genes) in mood disorders. No gene was differentially expressed in all three regions in either disorder. There was a high correlation between fold changes in levels of RNA from 112 genes in Brodmann's area 9 from major depression and bipolar disorder (r2 = 0.91, p < 0.001). Levels of RNA for four risk genes for major depression were lower in Brodmann's area 9 in that disorder. CONCLUSION: Our data argue that there are complex regional-specific changes in cortical gene expression in major depression and bipolar disorder that includes the expression of some risk genes for major depression in those with that disorder. It could be hypothesised that the common changes in gene expression in major depression and bipolar disorder are involved in the genesis of symptoms common to both disorders.


Assuntos
Transtorno Bipolar/patologia , Córtex Cerebral/patologia , Transtorno Depressivo Maior/patologia , Expressão Gênica , Predisposição Genética para Doença , Transtorno Bipolar/genética , Transtorno Depressivo Maior/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Electrophoresis ; 40(2): 247-253, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30367480

RESUMO

Levels of a reference protein must be the same as a proportion of total protein in all tissues and, in the study of human diseases, cannot vary with factors such as age, gender or disease pathophysiology. It is increasingly apparent that there may be few, if any, proteins that display the characteristics of a reference protein within the human central nervous system (CNS). To begin to challenge this hypothesis, we used Western blotting to compare variance in levels of the "gold standard" reference protein, ß-actin, in Brodmann's area 9 from 194 subjects to variance of total transferred protein measured as intensity of Ponceau S staining. The coefficient of variance of sum intensity measurements for ß-actin levels across all donors was 47% compared to 24 and 27% for the sum intensity of Ponceau S staining measured using two different detection techniques. These data strongly suggest that the level of ß-actin, proportional to total protein, is not constant in human cortex which raises further doubt about the use of reference proteins to normalise data in human CNS studies. Considering our data, we suggest an alternative approach to presenting data from Western blotting of human CNS.


Assuntos
Actinas/análise , Córtex Cerebral/química , Córtex Cerebral/metabolismo , Biomarcadores , Western Blotting/normas , Feminino , Humanos , Masculino , Transtornos Mentais/metabolismo , Pessoa de Meia-Idade , Padrões de Referência , Suicídio
8.
J Neuroendocrinol ; 30(11): e12652, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30311279

RESUMO

Sex differences are a prominent feature of the pathophysiology of psychiatric disorders, such as major depressive disorder, which affects women at a higher incidence than men. Research suggests that the most potent endogenous oestrogen, 17ß-oestradiol, may have therapeutic potential in treating depression. However, preclinical studies have produced mixed results, likely as a result of various methodological factors such as treatment duration. The present study aimed to investigate the effects of ovariectomy and chronic 17ß-oestradiol treatment via a s.c. silastic implant on behaviours relevant to depression in adult female Sprague-Dawley rats. Rats were assessed in the forced swim test, saccharin preference test and novel object recognition memory test, as well as for possible confounding behaviours, including locomotion and anxiety (open field test) and motivation and anxiety (novelty suppressed feeding test). Treatment effects were verified using body and uterus weight, as well as serum concentrations of 17ß-oestradiol, progesterone and testosterone. Compared to ovariectomised rats, chronic 17ß-oestradiol treatment enhanced saccharin preference and novel object recognition performance. There were no group differences in passive or active coping behaviour when assayed using the forced swim test. Taken together, these results support an antidepressant-like action of oestrogens but highlight that the beneficial effects of chronic 17ß-oestradiol treatment may be related to specific depression-related symptoms, particularly anhedonia and memory.


Assuntos
Antidepressivos/administração & dosagem , Depressão/fisiopatologia , Estradiol/administração & dosagem , Adaptação Psicológica/efeitos dos fármacos , Anedonia/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/tratamento farmacológico , Estradiol/sangue , Feminino , Memória/efeitos dos fármacos , Ovariectomia , Progesterona/sangue , Ratos Sprague-Dawley , Testosterona/sangue
9.
J Hum Genet ; 63(12): 1251-1258, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218069

RESUMO

Catechol-O-methyltransferase (COMT) is an enzyme that catalyses the O-methylation, and thereby the inactivation, of catechol-containing molecules. In humans, it has been suggested that COMT modulates cognitive ability, possibly by regulating degradation of dopamine in the prefrontal cortex. Hence, it is significant that two COMT SNPs, rs4680 (c.472 G > A, p.Val158Met) and rs4818 (c.408 C > G), have been associated with cognitive ability in humans. We have shown these SNPs to be associated with levels of muscarinic M1 receptor mRNA in human cortex, which is significant as that receptor also regulates cognitive ability. We decided to determine if COMT genotype was associated with varying levels of COMT protein, as this could be a mechanism by which COMT genotype could be associated with changes in muscarinic M1 receptor mRNA levels. Hence, we measured COMT levels in prefrontal cortex obtained postmortem from 199 subjects, some of whom had a history of schizophrenia, major depressive disorders or bipolar disorders. Our data show, independent of diagnostic status, that genotype at rs4680 and rs4818, but not at rs737865 and rs165599, is associated with differing levels of soluble COMT (S-COMT), but not membrane-bound COMT (MB-COMT). These findings suggest that the association between COMT polymorphisms and cognitive functioning could be, at least in part, due to their association with varying levels of S-COMT. This is important as, unlike MB-COMT, the substrates targeted by S-COMT are likely to be intra-cellular rather than, like dopamine, located mainly in the synaptic vesicles or the extra-cellular space.


Assuntos
Catecol O-Metiltransferase , Membrana Celular , Cognição , Genótipo , Polimorfismo de Nucleotídeo Único , Córtex Pré-Frontal/metabolismo , Vesículas Sinápticas , Adulto , Idoso , Catecol O-Metiltransferase/genética , Catecol O-Metiltransferase/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Solubilidade , Vesículas Sinápticas/metabolismo
10.
World J Psychiatry ; 8(2): 51-63, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29988908

RESUMO

Glutamate is the predominant excitatory neurotransmitter in the human brain and it has been shown that prolonged activation of the glutamatergic system leads to nerve damage and cell death. Following release from the pre-synaptic neuron and synaptic transmission, glutamate is either taken up into the pre-synaptic neuron or neighbouring glia by transmembrane glutamate transporters. Excitatory amino acid transporter (EAAT) 1 and EAAT2 are Na+-dependant glutamate transporters expressed predominantly in glia cells of the central nervous system. As the most abundant glutamate transporters, their primary role is to modulate levels of glutamatergic excitability and prevent spill over of glutamate beyond the synapse. This role is facilitated through the binding and transportation of glutamate into astrocytes and microglia. The function of EAAT1 and EAAT2 is heavily regulated at the levels of gene expression, post-transcriptional splicing, glycosylation states and cell-surface trafficking of the protein. Both glutamatergic dysfunction and glial dysfunction have been proposed to be involved in psychiatric disorder. This review will present an overview of the roles that EAAT1 and EAAT2 play in modulating glutamatergic activity in the human brain, and mount an argument that these two transporters could be involved in the aetiologies of schizophrenia and affective disorders as well as represent potential drug targets for novel therapies for those disorders.

11.
Int J Neuropsychopharmacol ; 21(3): 216-225, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30052978

RESUMO

Background: Antipsychotic drugs plus aspirin (acetylsalicylic acid), which targets prostaglandin-endoperoxide synthase 1 (PTGS1: COX1), improved therapeutic outcomes when treating schizophrenia. Our microarray data showed higher levels of PTGS1 mRNA in the dorsolateral prefrontal cortex from subjects with schizophrenia of long duration of illness, suggesting aspirin plus antipsychotic drugs could have therapeutic effects by lowering PTGS1 expression in the cortex of subjects with the disorder. Methods: We used Western blotting to measure levels of PTSG1 protein in human postmortem CNS, rat and mouse cortex, and cells in culture. Results: Compared with controls, PTGS1 levels were 41% lower in the dorsolateral prefrontal cortex (P<.01), but not the anterior cingulate or frontal pole, from subjects with schizophrenia. Levels of PTGS1 were not changed in the dorsolateral prefrontal cortex in mood disorders or in the cortex of rats treated with antipsychotic drugs. There was a strong trend (P=.05) to lower cortical PTGS1 10 months after mice were treated postnatally with polyinosinic-polycytidylic acid sodium salt (Poly I:C), consistent with cortical PTGS1 being lower in adult mice after exposure to an immune activator postnatally. In CCF-STTG1 cells, a human-derived astrocytic cell line, aspirin caused a dose-dependent decrease in PTGS1 that was decreased further with the addition of risperidone. Conclusions: Our data suggest low levels of dorsolateral prefrontal cortex PTGS1 could be associated with the pathophysiology of schizophrenia, and improved therapeutic outcome from treating schizophrenia with antipsychotic drugs augmented with aspirin may be because such treatment lowers cortical PTGS1.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antipsicóticos/uso terapêutico , Aspirina/uso terapêutico , Prostaglandina-Endoperóxido Sintases/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/enzimologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antipsicóticos/farmacologia , Aspirina/farmacologia , Transtorno Bipolar/tratamento farmacológico , Transtorno Bipolar/enzimologia , Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Linhagem Celular , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/enzimologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Poli I-C , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Risperidona/farmacologia , Risperidona/uso terapêutico
12.
Noncoding RNA ; 4(2)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29657307

RESUMO

Schizophrenia is associated with diverse changes in the brain's transcriptome and proteome. Underlying these changes is the complex dysregulation of gene expression and protein production that varies both spatially across brain regions and temporally with the progression of the illness. The growing body of literature showing changes in non-coding RNA in individuals with schizophrenia offers new insights into the mechanisms causing this dysregulation. A large number of studies have reported that the expression of microRNA (miRNA) is altered in the brains of individuals with schizophrenia. This evidence is complemented by findings that single nucleotide polymorphisms (SNPs) in miRNA host gene sequences can confer an increased risk of developing the disorder. Additionally, recent evidence suggests the expression of other non-coding RNAs, such as small nucleolar RNA and long non-coding RNA, may also be affected in schizophrenia. Understanding how these changes in non-coding RNAs contribute to the development and progression of schizophrenia offers potential avenues for the better treatment and diagnosis of the disorder. This review will focus on the evidence supporting the involvement of non-coding RNA in schizophrenia and its therapeutic potential.

13.
NPJ Schizophr ; 4(1): 4, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29463818

RESUMO

Schizophrenia (Sz) probably occurs after genetically susceptible individuals encounter a deleterious environmental factor that triggers epigenetic mechanisms to change CNS gene expression. To determine if omnibus changes in CNS gene expression are present in Sz, we compared mRNA levels in the frontal pole (Brodmann's area (BA) 10), the dorsolateral prefrontal cortex (BA 9) and cingulate cortex (BA 33) from 15 subjects with Sz and 15 controls using the Affymetrix™ Human Exon 1.0 ST Array. Differences in mRNA levels (±≥20%; p < 0.01) were identified (JMP Genomics 5.1) and used to predict pathways and gene x gene interactions that would be affected by the changes in gene expression using Ingenuity Pathway Analysis. There was significant variation in mRNA levels with diagnoses for 566 genes in BA 10, 65 genes in BA 9 and 40 genes in BA 33. In Sz, there was an over-representation of genes with changed expression involved in inflammation and development in BA 10, cell morphology in BA 9 and amino acid metabolism and small molecule biochemistry in BA 33. Using 94 genes with altered levels of expression in BA 10 from subjects with Sz, it was possible to construct an interactome of proven direct gene x gene interactions that was enriched for genes in inflammatory, developmental, oestrogen, serotonergic, cholinergic and NRG1 regulated pathways. Our data shows complex, regionally specific changes in cortical gene expression in Sz that are predicted to affect homeostasis between biochemical pathways already proposed to be important in the pathophysiology of the disorder.

14.
NPJ Schizophr ; 2: 16002, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27336053

RESUMO

Our expression microarray studies showed messenger RNA (mRNA) for solute carrier family 39 (zinc transporter), member 12 (SLC39A12) was higher in dorsolateral prefrontal cortex from subjects with schizophrenia (Sz) in comparison with controls. To better understand the significance of these data we ascertained whether SLC39A12 mRNA was altered in a number of cortical regions (Brodmann's area (BA) 8, 9, 44) from subjects with Sz, in BA 9 from subjects with mood disorders and in rats treated with antipsychotic drugs. In addition, we determined whether inducing the expression of SLC39A12 resulted in an increased cellular zinc uptake. SLC39A12 variant 1 and 2 mRNA was measured using quantitative PCR. Zinc uptake was measured in CHO cells transfected with human SLC39A12 variant 1 and 2. In Sz, compared with controls, SLC39A12 variant 1 and 2 mRNA was higher in all cortical regions studied. The were no differences in levels of mRNA for either variant of SLC39A12 in BA 9 from subjects with mood disorders and levels of mRNA for Slc39a12 was not different in the cortex of rats treated with antipsychotic drugs. Finally, expressing both variants in CHO-K1 cells was associated with an increase in radioactive zinc uptake. As increased levels of murine Slc39a12 mRNA has been shown to correlate with increasing cellular zinc uptake, our data would be consistent with the possibility of a dysregulated zinc homeostasis in the cortex of subjects with schizophrenia due to altered expression of SLC39A12.

15.
BMC Psychiatry ; 16: 154, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27206773

RESUMO

BACKGROUND: It is common practice, when using quantitative real time polymerase chain reaction (qPCR), to normalise levels of mRNA to reference gene mRNA which, by definition, should not vary between tissue, with any disease aetiology or after drug treatments. The complexity of human CNS means it unlikely that any gene could fulfil these criteria. METHODS: To address this issue we measured levels of mRNA for six potential reference genes (GAPDH, PPIA, SNCA, NOL9, TFB1M and SKP1) in three cortical regions (Brodmann's areas (BA) 8, 9 and 44) from 30 subjects with schizophrenia and 30 age and sex matched controls. We used a structured statistical approach to examine the characteristics of these data to determine their suitability as reference genes. We also analysed our data using reference genes selected by rank as defined using the average of the standard deviation of pair-gene ΔCt and the BestKeeper, NormFinder and geNorm algorithms to determine if they suggested the same reference genes. RESULTS: Our minimally derived data showed that levels of mRNA for all of the six genes varied between cortical regions and therefore no gene fulfilled the absolute requirements for use as reference genes. As levels of some mRNA for some genes did not vary with diagnoses within a cortical region from subjects with schizophrenia compared to controls, we normalised levels of mRNA for all the other genes to mRNA for one, two or three reference genes in each cortical region. This showed that using the geometric mean of at least two reference genes gave more reproducible results. Finally, using the reference gene ranking protocols the average of the standard deviation of pair-gene ΔCt, BestKeeper, NormFinder and geNorm we showed that these approaches ranked potential reference genes differently. We then showed that outcomes of comparing data from subjects with schizophrenia and controls varied depending on the reference genes chosen. CONCLUSIONS: Our data shows that the selection of reference genes is a significant component of qPCR study design and therefore the process by which reference genes are selected must be clearly listed as a potential confound in studying gene expression in human CNS. This should include showing that, using minimally derived qPCR data, levels of mRNA for proposed reference genes does not vary with variables such as diagnoses and CNS region.


Assuntos
Córtex Cerebral , Marcadores Genéticos , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Esquizofrenia/genética , Algoritmos , Cadáver , Estudos de Casos e Controles , Sistema Nervoso Central/metabolismo , Expressão Gênica , Humanos , RNA Mensageiro/genética , Valores de Referência
16.
World J Psychiatry ; 6(1): 102-17, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27014601

RESUMO

Identifying biomarkers that can be used as diagnostics or predictors of treatment response (theranostics) in people with schizophrenia (Sz) will be an important step towards being able to provide personalized treatment. Findings from the studies in brain tissue have not yet been translated into biomarkers that are practical in clinical use because brain biopsies are not acceptable and neuroimaging techniques are expensive and the results are inconclusive. Thus, in recent years, there has been search for blood-based biomarkers for Sz as a valid alternative. Although there are some encouraging preliminary data to support the notion of peripheral biomarkers for Sz, it must be acknowledged that Sz is a complex and heterogeneous disorder which needs to be further dissected into subtype using biological based and clinical markers. The scope of this review is to critically examine published blood-based biomarker of Sz, focusing on possible uses for diagnosis, treatment response, or their relationship with schizophrenia-associated phenotype. We sorted the studies into six categories which include: (1) brain-derived neurotrophic factor; (2) inflammation and immune function; (3) neurochemistry; (4) oxidative stress response and metabolism; (5) epigenetics and microRNA; and (6) transcriptome and proteome studies. This review also summarized the molecules which have been conclusively reported as potential blood-based biomarkers for Sz in different blood cell types. Finally, we further discusses the pitfall of current blood-based studies and suggest that a prediction model-based, Sz specific, blood oriented study design as well as standardize blood collection conditions would be useful for Sz biomarker development.

17.
J Affect Disord ; 190: 241-248, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26521087

RESUMO

INTRODUCTION: The glutamatergic system has recently been implicated in the pathogenesis and treatment of major depressive disorders(MDD) and mGlu2/3 receptors play an important role in regulating glutamatergic tone. We therefore measured cortical levels of mGlu2/3 to determine if they were changed in MDD. METHODS: Binding parameters for [(3)H]LY341495 (mGlu2/3 antagonist) were determined to allow optimized in situ binding with autoradiography to be completed using a number of CNS regions. Subsequently, density of [(3)H]LY341495 binding was measured in BA24(anterior cingulate cortex), BA17(visual cortex) and BA46(dorsolateral prefrontal cortex) from subjects with MDD, Bipolar Disorder(BPD), Schizophrenia(SCZ), and controls, as well as rats treated with imipramine (20mg/kg), fluoxetine (10mg/kg), or vehicle. RESULTS: mGlu2/3 are widely expressed throughout the brain with high levels observed in cortex. [(3)H]LY341495 binding was significantly lower in BA24 from subjects with MDD (mean ± SEM=141.3 ± 14.65 fmol/ETE) relative to controls (184.9 ± 7.76 fmol/ETE; Cohen's d=1.005, p<0.05). There were no other differences with diagnoses, and chronic antidepressant treatment in rats had minimal effect on binding. LIMITATIONS: Using this approach we are unable to determine whether the change represents fluctuations in mGlu2, mGlu3, or both. Moreover, using postmortem tissue we are unable to dissociate the irrevocable confound of suicidality upon binding levels. CONCLUSION: We have demonstrated lower [(3)H]LY341495 binding levels in MDD in BA24-a brain region implicated in depression. Moreover we show that the lower levels are unlikely to be the result of antidepressant treatment. These data suggest that levels of either mGlu2 and/or mGlu3 are affected in the aetiology of MDD.


Assuntos
Aminoácidos/metabolismo , Transtorno Bipolar , Transtorno Depressivo Maior/metabolismo , Giro do Cíngulo/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia , Xantenos/metabolismo , Animais , Antidepressivos/uso terapêutico , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transtorno Depressivo Maior/diagnóstico por imagem , Antagonistas de Aminoácidos Excitatórios/metabolismo , Feminino , Fluoxetina/farmacologia , Giro do Cíngulo/diagnóstico por imagem , Humanos , Imipramina/farmacologia , Masculino , Pessoa de Meia-Idade , Ensaio Radioligante , Cintilografia , Ratos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/metabolismo , Trítio/metabolismo
18.
Int J Endocrinol ; 2015: 615356, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26491441

RESUMO

Gender differences in schizophrenia have been extensively researched and it is being increasingly accepted that gonadal steroids are strongly attributed to this phenomenon. Of the various hormones implicated, the estrogen hypothesis has been the most widely researched one and it postulates that estrogen exerts a protective effect by buffering females against the development and severity of the illness. In this review, we comprehensively analyse studies that have investigated the effects of estrogen, in particular 17ß-estradiol, in clinical, animal, and molecular research with relevance to schizophrenia. Specifically, we discuss the current evidence on estrogen dysfunction in schizophrenia patients and review the clinical findings on the use of estradiol as an adjunctive treatment in schizophrenia patients. Preclinical research that has used animal models and molecular probes to investigate estradiol's underlying protective mechanisms is also substantially discussed, with particular focus on estradiol's impact on the major neurotransmitter systems implicated in schizophrenia, namely, the dopamine, serotonin, and glutamate systems.

19.
Front Cell Neurosci ; 7: 55, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23653591

RESUMO

Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.

20.
Int J Neuropsychopharmacol ; 15(6): 727-37, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21791160

RESUMO

Emerging evidence suggests impaired one-carbon metabolism in schizophrenia. Homocysteine is one of the key components of one-carbon metabolism. Elevated plasma homocysteine levels were reported in schizophrenia. A linkage study found that nicotinamide-N-methyltransferase (NNMT), an enzyme involved in one-carbon metabolism, is a determinant of plasma homocysteine levels. In an association study the rs694539 NNMT single nucleotide polymorphism (SNP) was found significantly associated with hyperhomocysteinaemia. Aiming to assess the possible involvement of NNMT in the aetiology of schizophrenia we (1) performed an association study of eight NNMT tagged SNPs in 202 families sharing the same ethnic origin including healthy parents and a schizophrenia proband; (2) assessed NNMT mRNA levels in post-mortem frontal cortex of schizophrenia patients. Genotyping was performed using the ABI SNaPshot and the HRM methods. Individual SNPs and haplotypes were analysed for association using the family-based association test (UNPHASED software). NNMT mRNA levels were measured using RT real-time PCR. In the single SNP analysis, rs694539, previously reported to be associated with hyperhomocysteinaemia, and rs1941404 were significantly associated with schizophrenia (p<0.004 and p=0.033, respectively, following permutation test adjustment). Several haplotypes were also significantly associated with schizophrenia (global p values <0.05 following permutation test adjustment). This is the first study demonstrating an association of NNMT with schizophrenia. Post-mortem frontal cortex NNMT mRNA levels were ~35% lower in schizophrenia patients vs. control subjects. Our study favours the notion that NNMT is involved in the aetiology of schizophrenia.


Assuntos
Lobo Frontal/metabolismo , Nicotinamida N-Metiltransferase/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Mensageiro/metabolismo , Esquizofrenia/genética , Esquizofrenia/patologia , Adulto , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Nicotinamida N-Metiltransferase/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...