Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AJNR Am J Neuroradiol ; 37(12): 2348-2355, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27609620

RESUMO

BACKGROUND AND PURPOSE: Rasmussen syndrome, also known as Rasmussen encephalitis, is typically associated with volume loss of the affected hemisphere of the brain. Our aim was to apply automated quantitative volumetric MR imaging analyses to patients diagnosed with Rasmussen encephalitis, to determine the predictive value of lobar volumetric measures and to assess regional atrophy differences as well as monitor disease progression by using these measures. MATERIALS AND METHODS: Nineteen patients (42 scans) with diagnosed Rasmussen encephalitis were studied. We used 2 control groups: one with 42 age- and sex-matched healthy subjects and the other with 42 epileptic patients without Rasmussen encephalitis with the same disease duration as patients with Rasmussen encephalitis. Volumetric analysis was performed on T1-weighted images by using BrainSuite. Ratios of volumes from the affected hemisphere divided by those from the unaffected hemisphere were used as input to a logistic regression classifier, which was trained to discriminate patients from controls. Using the classifier, we compared the predictive accuracy of all the volumetric measures. These ratios were used to further assess regional atrophy differences and correlate with epilepsy duration. RESULTS: Interhemispheric and frontal lobe ratios had the best prediction accuracy for separating patients with Rasmussen encephalitis from healthy controls and patient controls without Rasmussen encephalitis. The insula showed significantly more atrophy compared with all the other cortical regions. Patients with longitudinal scans showed progressive volume loss in the affected hemisphere. Atrophy of the frontal lobe and insula correlated significantly with epilepsy duration. CONCLUSIONS: Automated quantitative volumetric analysis provides accurate separation of patients with Rasmussen encephalitis from healthy controls and epileptic patients without Rasmussen encephalitis, and thus may assist the diagnosis of Rasmussen encephalitis. Volumetric analysis could also be included as part of follow-up for patients with Rasmussen encephalitis to assess disease progression.


Assuntos
Encéfalo/diagnóstico por imagem , Encefalite/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Atrofia/patologia , Encéfalo/patologia , Encefalite/patologia , Feminino , Humanos , Masculino
2.
AJNR Am J Neuroradiol ; 29(4): 802-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18397968

RESUMO

BACKGROUND AND PURPOSE: Children with a shunt for hydrocephalus often undergo multiple follow-up head CT scans, increasing the risk for long-term effects of ionizing radiation. The purpose of our study was to evaluate if an unenhanced low-dose head CT could consistently provide acceptable image quality and diagnostic information. MATERIALS AND METHODS: Ninety-two children (mean age, 9 years; range, 8 months to 21 years; 45 boys and 47 girls) with a shunt for hydrocephalus and no clinical evidence of shunt malfunction who were referred for a follow-up nonenhanced head CT were included in the study. All studies were performed on a 4-section multidetector CT. Two CT studies were selected retrospectively for each patient, 1 performed at standard dose (220 mA) and 1 at low dose (80 mAs). Two radiologists independently evaluated and graded both standard-dose and low-dose studies for various image quality parameters. Attenuation and noise levels were measured, and gray-white differentiation and contrast-to-noise ratio (CNR) were calculated. RESULTS: Low-dose CT resulted in 63% mean dose reduction. All low-dose CT scans were diagnostically acceptable. Image quality parameters were significantly lower at low dose (P = .0001) except for the parameters for streak artifacts (P = .46) and need for further imaging (P = .47), which were higher. Mean noise levels were significantly higher (P = .001) in low-dose studies, whereas CNR was significantly higher in standard dose CT (P = .001). A moderate to perfect agreement was noted between the 2 readers with regard to image quality assessment (65%-99%). CONCLUSION: Low-dose nonenhanced head CT consistently provides diagnostically acceptable images with relevant diagnostic information in children with VP shunts resulting in substantial dose savings.


Assuntos
Cabeça/diagnóstico por imagem , Hidrocefalia/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X , Derivação Ventriculoperitoneal , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Hidrocefalia/cirurgia , Lactente , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...